A calibration framework toward model generalization for bacteria concentration estimation in water resource recovery facilities
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Aljehani, Fahad
[1
]
N'Doye, Ibrahima
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
King Abdullah Univ Sci & Technol KAUST, Environm Sci & Engn Program, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
N'Doye, Ibrahima
[1
,2
]
Hong, Pei-Ying
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Environm Sci & Engn Program, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Hong, Pei-Ying
[2
]
Monjed, Mohammad Khalil
论文数: 0引用数: 0
h-index: 0
机构:
Umm Al Qura Univ, Fac Sci, Mecca, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Monjed, Mohammad Khalil
[3
]
Laleg-Kirati, Taous-Meriem
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Res Digital Sci & Technol INRIA, Paris, FranceKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Laleg-Kirati, Taous-Meriem
[4
]
机构:
[1] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Environm Sci & Engn Program, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[3] Umm Al Qura Univ, Fac Sci, Mecca, Saudi Arabia
[4] Natl Inst Res Digital Sci & Technol INRIA, Paris, France
Water resource recovery facilities;
Bacteria concentration sensing;
Wasserstein generative adversarial network (WGAN);
Out-of-distribution (OOD) generalization;
Calibration of neural networks;
D O I:
10.1038/s41598-024-82598-y
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Reduced bacteria concentrations in wastewater is a key indicator of the efficacy of water resource recovery facilities (WRRFs). However, monitoring the presence of bacterial concentrations in real time at each stage of the WRRF is challenging as it requires taking and processing water samples offline. Although few studies have been proposed to predict bacterial concentrations using data-driven models, generalizing these models to unseen data from different WRRFs remains challenging. This paper proposes a calibration approach based on neural networks to adapt the optimal models across various WRRFs in Saudi Arabia for bacterial estimation at the influent and effluent stages. The calibration relies on the out-of-distribution (OOD) framework of the physiochemical water parameters (e.g., pH, COD, TDS, turbidity, conductivity) with a design threshold chosen based on the data distribution of the received unseen samples. We propose a calibration framework that continues updating the trained neural network model for accurate bacterial concentration estimation upon receiving new samples. We tested the effectiveness of the proposed calibration scheme on four WRRF datasets in Saudi Arabia, comparing the results with before and after calibration without the OOD. Before calibration model was based on a traditional and optimal neural network approach, typically considered the conventional method for building neural networks. After calibration without OOD, the model continued retraining without explicitly checking for OOD condition. The results showed that the proposed calibration framework of the selected baseline WRRF with the OOD scheme improved \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.68\%$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$56.00\%$$\end{document} of the worst-case influent bacteria concentration before calibration and after calibration without OOD, respectively. Similarly, the worst-case effluent bacteria concentration estimation was enhanced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.37\%$$\end{document} before calibration and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$33.98\%$$\end{document} after calibration without the OOD. Our findings highlight the importance of integrating the calibration framework with neural network approaches to achieve model generalization.
机构:
Univ Nebraska Lincoln, Dept Civil Engn, Nebraska Hall W181,900 N 16th St, Lincoln, NE 68588 USAUniv Nebraska Lincoln, Dept Civil Engn, Nebraska Hall W181,900 N 16th St, Lincoln, NE 68588 USA
Dahab, Mohamed F.
Williams, Robert E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nebraska Lincoln, Dept Mech & Mat Engn, Nebraska Hall W342, Lincoln, NE 68588 USAUniv Nebraska Lincoln, Dept Civil Engn, Nebraska Hall W181,900 N 16th St, Lincoln, NE 68588 USA
机构:
City Univ New York, City Coll, Grove Sch Engn, New York, NY 10031 USA
CCNY, Smart Grid Interdependencies Lab, Grove Sch Engn, New York, NY USACity Univ New York, City Coll, Grove Sch Engn, New York, NY 10031 USA
Mohamed, Ahmed
Kanwhen, Ondrea
论文数: 0引用数: 0
h-index: 0
机构:
City Univ New York, City Coll, Grove Sch Engn, New York, NY 10031 USA
CCNY, Smart Grid Interdependencies Lab, Grove Sch Engn, New York, NY USACity Univ New York, City Coll, Grove Sch Engn, New York, NY 10031 USA
Kanwhen, Ondrea
Bobker, Michael
论文数: 0引用数: 0
h-index: 0
机构:
City Univ New York, City Coll, Grove Sch Engn, New York, NY 10031 USA
CUNY Inst Urban Syst, New York, NY USACity Univ New York, City Coll, Grove Sch Engn, New York, NY 10031 USA