A calibration framework toward model generalization for bacteria concentration estimation in water resource recovery facilities
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Aljehani, Fahad
[1
]
N'Doye, Ibrahima
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
King Abdullah Univ Sci & Technol KAUST, Environm Sci & Engn Program, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
N'Doye, Ibrahima
[1
,2
]
Hong, Pei-Ying
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Environm Sci & Engn Program, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Hong, Pei-Ying
[2
]
Monjed, Mohammad Khalil
论文数: 0引用数: 0
h-index: 0
机构:
Umm Al Qura Univ, Fac Sci, Mecca, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Monjed, Mohammad Khalil
[3
]
Laleg-Kirati, Taous-Meriem
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Res Digital Sci & Technol INRIA, Paris, FranceKing Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Laleg-Kirati, Taous-Meriem
[4
]
机构:
[1] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Environm Sci & Engn Program, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[3] Umm Al Qura Univ, Fac Sci, Mecca, Saudi Arabia
[4] Natl Inst Res Digital Sci & Technol INRIA, Paris, France
Water resource recovery facilities;
Bacteria concentration sensing;
Wasserstein generative adversarial network (WGAN);
Out-of-distribution (OOD) generalization;
Calibration of neural networks;
D O I:
10.1038/s41598-024-82598-y
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Reduced bacteria concentrations in wastewater is a key indicator of the efficacy of water resource recovery facilities (WRRFs). However, monitoring the presence of bacterial concentrations in real time at each stage of the WRRF is challenging as it requires taking and processing water samples offline. Although few studies have been proposed to predict bacterial concentrations using data-driven models, generalizing these models to unseen data from different WRRFs remains challenging. This paper proposes a calibration approach based on neural networks to adapt the optimal models across various WRRFs in Saudi Arabia for bacterial estimation at the influent and effluent stages. The calibration relies on the out-of-distribution (OOD) framework of the physiochemical water parameters (e.g., pH, COD, TDS, turbidity, conductivity) with a design threshold chosen based on the data distribution of the received unseen samples. We propose a calibration framework that continues updating the trained neural network model for accurate bacterial concentration estimation upon receiving new samples. We tested the effectiveness of the proposed calibration scheme on four WRRF datasets in Saudi Arabia, comparing the results with before and after calibration without the OOD. Before calibration model was based on a traditional and optimal neural network approach, typically considered the conventional method for building neural networks. After calibration without OOD, the model continued retraining without explicitly checking for OOD condition. The results showed that the proposed calibration framework of the selected baseline WRRF with the OOD scheme improved \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.68\%$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$56.00\%$$\end{document} of the worst-case influent bacteria concentration before calibration and after calibration without OOD, respectively. Similarly, the worst-case effluent bacteria concentration estimation was enhanced by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.37\%$$\end{document} before calibration and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$33.98\%$$\end{document} after calibration without the OOD. Our findings highlight the importance of integrating the calibration framework with neural network approaches to achieve model generalization.
机构:
Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USAUniv Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
Firouzian, Mani
Stenstrom, Michael K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Los Angeles, CA USAUniv Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
Stenstrom, Michael K.
Rosso, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
Univ Calif Irvine, Water Energy Nexus Ctr, Irvine, CA USAUniv Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
机构:
Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United StatesDepartment of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United States
Wu, Jingjing
Rogers, Shane W.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United StatesDepartment of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United States
Rogers, Shane W.
Schaummann, Rebekah
论文数: 0引用数: 0
h-index: 0
机构:
Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United StatesDepartment of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United States
Schaummann, Rebekah
Higgins, Chris
论文数: 0引用数: 0
h-index: 0
机构:
Boothbay Harbor Sewer District, Boothbay Harbor,ME, United StatesDepartment of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United States
Higgins, Chris
Price, Nichole
论文数: 0引用数: 0
h-index: 0
机构:
Bigelow Laboratories for Ocean Sciences, Boothbay Harbor,ME, United StatesDepartment of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam,NY,13699-5710, United States
机构:
Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, EnglandUniv Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
Jones, Oliver P. H.
Oakley, Jeremy E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, EnglandUniv Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
Oakley, Jeremy E.
Purshouse, Robin C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, EnglandUniv Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
Purshouse, Robin C.
2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC),
2019,
: 3148
-
3153