New three-dimensional flat band candidate materials Pb2As2O7 and Pb2Sn2O7

被引:1
|
作者
Hase, Izumi [1 ]
Higashi, Yoichi [1 ]
Eisaki, Hiroshi [1 ]
Kawashima, Kenji [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 2, 1-1-1 Umezono, Tsukuba 3058568, Japan
[2] IMRA JAPAN Mat R&D Co Ltd, 2-1 Asahi machi, Kariya, Aichi 4480032, Japan
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
日本学术振兴会;
关键词
HUBBARD-MODEL; GROUND-STATES; FERROMAGNETISM;
D O I
10.1038/s41598-024-77977-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Energy dispersion of electrons is the most fundamental property of the solid state physics. In models of electrons on a lattice with strong geometric frustration, the band dispersion of electrons can disappear due to the quantum destructive interference of the wavefunction. This is called a flat band, and it is known to be the stage for the emergence of various fascinating physical properties. It is a challenging task to realize this flat band in a real material. In this study, we performed first-principles calculations on two compounds, Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document} and Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Sn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document}, which are candidates to have flat bands near the Fermi level. Both compounds have electronic states close to flat bands, but the band width is significantly larger than that of Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Sb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document} shown in previous research. Nevertheless, the density of states at the Fermi level of Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document} is large enough to cause the system to undergo a ferromagnetic transition. In the case of Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Sn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document}, pseudo-gap behavior near the Fermi level was observed. These findings underscore the importance of investigating the influence of flat bands on electronic energy dispersion, providing a crucial step toward understanding the emergence and characteristics of flat bands in novel materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SYNTHESIS OF BARYSILITE PB3SI2O7
    BORDEAUX, D
    LAJZEROW.J
    BULLETIN DE LA SOCIETE FRANCAISE MINERALOGIE ET DE CRISTALLOGRAPHIE, 1969, 92 (04): : 383 - &
  • [32] Phase relations in the systems Zn2P2O7 parallel to Sn2P2O7, SnP2O7
    Shitova, VI
    Popova, VF
    Grabovenko, LY
    Kuchaeva, SK
    Grebenshchikov, RG
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 1996, 69 (12) : 1764 - 1768
  • [33] SUBSTITUTION OF PB BY CD, BA, SR IN PB3GE2O7
    SALNIKOW, V
    BANIK, G
    ETTMAYER, P
    LUX, B
    MONATSHEFTE FUR CHEMIE, 1979, 110 (03): : 755 - 758
  • [34] Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production
    Li, Yuejun
    Cao, Tieping
    Mei, Zemin
    Li, Xiaoping
    Sun, Dawei
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 142 (142)
  • [35] ANISOTROPIC GD MAGNETISM IN TLSR2GDCU2O7-DELTA, (PB0.5CU0.5)SR2GDCU2O7-DELTA, AND PB2SR2GDCU3O8+Y
    LAI, CC
    SHIEH, JH
    CHIOU, BS
    KU, HC
    HO, JC
    PHYSICAL REVIEW B, 1994, 49 (02): : 1499 - 1502
  • [36] POLYMORPHISM IN BI2SN2O7
    SHANNON, RD
    BIERLEIN, JD
    GILLSON, JL
    JONES, GA
    SLEIGHT, AW
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1980, 41 (02) : 117 - 122
  • [37] COMPOUND OF PYROCHLORE TYPE - PB2SN2O6, XH2O
    MORGENST.I
    MICHEL, MA
    ANNALES DE CHIMIE FRANCE, 1971, 6 (02): : 109 - &
  • [38] CRYSTAL-STRUCTURE OF LEAD ANTIMONATE PB2SB2O7
    IVANOV, SA
    ZAVODNIK, VE
    KRISTALLOGRAFIYA, 1990, 35 (04): : 842 - 846
  • [39] Synthesis and photoluminescence properties of Pb2+ doped Ba2Be2B2O7
    Pekgozlu, Ilhan
    OPTIK, 2015, 126 (14): : 1369 - 1371
  • [40] STRUCTURE OF NI8PB(P2O7)2 CRYSTALS
    KRASNIKOV, VV
    KONSTANT, ZA
    BELSKII, VK
    INORGANIC MATERIALS, 1985, 21 (09) : 1360 - 1363