New three-dimensional flat band candidate materials Pb2As2O7 and Pb2Sn2O7

被引:1
|
作者
Hase, Izumi [1 ]
Higashi, Yoichi [1 ]
Eisaki, Hiroshi [1 ]
Kawashima, Kenji [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 2, 1-1-1 Umezono, Tsukuba 3058568, Japan
[2] IMRA JAPAN Mat R&D Co Ltd, 2-1 Asahi machi, Kariya, Aichi 4480032, Japan
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
日本学术振兴会;
关键词
HUBBARD-MODEL; GROUND-STATES; FERROMAGNETISM;
D O I
10.1038/s41598-024-77977-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Energy dispersion of electrons is the most fundamental property of the solid state physics. In models of electrons on a lattice with strong geometric frustration, the band dispersion of electrons can disappear due to the quantum destructive interference of the wavefunction. This is called a flat band, and it is known to be the stage for the emergence of various fascinating physical properties. It is a challenging task to realize this flat band in a real material. In this study, we performed first-principles calculations on two compounds, Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document} and Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Sn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document}, which are candidates to have flat bands near the Fermi level. Both compounds have electronic states close to flat bands, but the band width is significantly larger than that of Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Sb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document} shown in previous research. Nevertheless, the density of states at the Fermi level of Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}As2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document} is large enough to cause the system to undergo a ferromagnetic transition. In the case of Pb2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}Sn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_7$$\end{document}, pseudo-gap behavior near the Fermi level was observed. These findings underscore the importance of investigating the influence of flat bands on electronic energy dispersion, providing a crucial step toward understanding the emergence and characteristics of flat bands in novel materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Exotic transition in the three-dimensional spin-liquid candidate Tb2Ti2O7
    Yaouanc, A.
    de Reotier, P. Dalmas
    Chapuis, Y.
    Marin, C.
    Vanishri, S.
    Aoki, D.
    Fak, B.
    Regnault, L. -P.
    Buisson, C.
    Amato, A.
    Baines, C.
    Hillier, A. D.
    PHYSICAL REVIEW B, 2011, 84 (18):
  • [12] VIBRATIONAL-SPECTRUM OF PB2V2O7
    BARAN, EJ
    PEDREGOSA, JC
    AYMONINO, PJ
    MONATSHEFTE FUR CHEMIE, 1975, 106 (05): : 1085 - 1090
  • [13] BAND-STRUCTURE OF METALLIC PYROCHLORE RUTHENATES BI2RU2O7 AND PB2RU2O6.5
    HSU, WY
    KASOWSKI, RV
    MILLER, T
    CHIANG, TC
    APPLIED PHYSICS LETTERS, 1988, 52 (10) : 792 - 794
  • [14] Glass formation and conductivity in the Pb2P2O7-Ag4P2O7-AgI system
    Dridi, N
    Boukhari, A
    Réau, JM
    MATERIALS LETTERS, 2001, 50 (5-6) : 302 - 307
  • [15] ORIENTED FORMATION OF PB2P2O7 FROM K2PB[P4O12]
    SCHNEIDER, M
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1983, 503 (08): : 238 - 240
  • [16] HIGH-TEMPERATURE SOLUTION PROPERTIES IN THE FLUX SYSTEMS DYPO4-PB2P2O7,YPO4-PB2P2O7
    EIGERMANN, W
    MULLERVOGT, G
    JOURNAL OF CRYSTAL GROWTH, 1983, 62 (03) : 639 - 641
  • [17] NEW CRYSTALLINE AND GLASSY PHASES IN THE PSEUDO-BINARY SYSTEM K4P2O7-PB2P2O7
    RULMONT, A
    TARTE, P
    WINAND, JM
    EUROPEAN JOURNAL OF SOLID STATE AND INORGANIC CHEMISTRY, 1991, 28 (05): : 1021 - 1034
  • [18] NMR study of metallic pyrochlore ruthenium oxides, Bi2Ru2O7 and Pb2Ru2O7-δ
    Sakai, H
    Yoshimura, K
    Kato, H
    Kambe, S
    Walstedt, RE
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2002, 63 (6-8) : 1039 - 1041
  • [19] Substitution in the Pb2V2O7-M2V2O7 systems with M = Ba, Sr, Ca, Cd
    Zhuravlev, VD
    Velikodnyi, YA
    ZHURNAL NEORGANICHESKOI KHIMII, 1997, 42 (08): : 1387 - 1389
  • [20] Impedance spectroscopy study of Pb2P2O7 compound
    Haibado Mahamoud
    Bassem Louati
    Faouzi Hlel
    Kamel Guidara
    Ionics, 2011, 17 : 223 - 228