Electric-Field-Induced Instability of Redox-Exfoliated Layered Transition Metal Dichalcogenides

被引:0
|
作者
Machado, Yan D. R. [1 ]
Prando, Gabriela A. [1 ,6 ]
Araujo, Leonardo F. [1 ]
da Silva, Leandro V. [2 ]
Salles, Maiara O. [2 ]
Grasseschi, Daniel [2 ]
Margulis, Walter [1 ]
Chalmpes, Nikolaos [4 ]
Vaia, Richard A. [5 ]
Gomes, Anderson S. L. [3 ]
Carvalho, Isabel C. S. [1 ]
机构
[1] Pontif Catholic Univ Rio de Janeiro, Dept Phys, BR-22451900 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Chem Inst, Inorgan Chem Dept, BR-21941909 Rio De Janeiro, Brazil
[3] Univ Fed Pernambuco, Dept Phys, BR-50670901 Recife, Brazil
[4] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14850 USA
[5] Wright Patterson AFB, AFB Res Labs, Mat & Mfg Directorate, Dayton, OH 45433 USA
[6] RISE Res Inst Sweden, S-16440 Stockholm, Sweden
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2025年 / 129卷 / 05期
关键词
ELECTROCHEMICAL PROPERTIES;
D O I
10.1021/acs.jpcc.4c07187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Redox-exfoliated layered transition metal dichalcogenides (LTMDs) find many applications in nonlinear optics, displays, and electronics. The investigated redox LTMD suspensions in this work were characterized optically and found to be highly stable due to surface anionic polyoxometalates (POMs), which maintained the separation between sheets by Coulombic repulsion. However, exposure of the uniform suspensions of LTMDs to an electric field led to agglomeration of the TMDs into clumps of the material in a nearly transparent solvent. This was attributed to the electrochemical reduction of the surface anionic POMs. The electrochemical stability of the redox-exfoliated ACN-MoS2 samples was also investigated by cyclic voltammetric measurements, which confirmed the POM reduction process. This study highlights that the stability of the LTMD/POM system can be compromised by the application of a low-intensity electric field and has bearings on its reliability in optoelectronic devices.
引用
收藏
页码:2582 / 2589
页数:8
相关论文
共 50 条
  • [31] ELECTRIC-FIELD-INDUCED RESONANCES
    LU, KT
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (10) : 1446 - 1447
  • [32] Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films
    Hamaguchi, M
    Aoyama, K
    Asanuma, S
    Uesu, Y
    Katsufuji, T
    APPLIED PHYSICS LETTERS, 2006, 88 (14)
  • [33] ELECTRIC-FIELD-INDUCED ISOTROPIC-NEMATIC PHASE-TRANSITION
    LELIDIS, I
    DURAND, G
    PHYSICAL REVIEW E, 1993, 48 (05): : 3822 - 3824
  • [34] Critical behavior in an electric-field-induced anchoring transition in a liquid crystal
    Aya, Satoshi
    Le, Khoa V.
    Sasaki, Yuji
    Araoka, Fumito
    Ishikawa, Ken
    Takezoe, Hideo
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [35] PARALLEL ELECTRIC-FIELD-INDUCED INSTABILITY IN THE MAGNETOSPHERIC ION-ELECTRON PLASMA
    AHMAD, MM
    AHMAD, A
    EARTH MOON AND PLANETS, 1993, 63 (03): : 187 - 198
  • [36] Heat capacity of PMN near an electric-field-induced phase transition
    M. V. Gorev
    V. S. Bondarev
    K. S. Aleksandrov
    JETP Letters, 2007, 85 : 283 - 285
  • [37] Heat capacity of PMN near an electric-field-induced phase transition
    Gorev, M. V.
    Bondarev, V. S.
    Aleksandrov, K. S.
    JETP LETTERS, 2007, 85 (06) : 283 - 285
  • [38] Configurational electronic states in layered transition metal dichalcogenides
    Vodeb, Jaka
    Kabanov, Viktor V.
    Gerasimenko, Yaroslav A.
    Venturini, Rok
    Ravnik, Jan
    van Midden, Marion A.
    Zupanic, Erik
    Sutar, Petra
    Mihailovic, Dragan
    NEW JOURNAL OF PHYSICS, 2019, 21 (08)
  • [39] INTERCALATION CONDITIONS FOR LAYERED TRANSITION-METAL DICHALCOGENIDES
    KULIKOV, LM
    INORGANIC MATERIALS, 1994, 30 (02) : 157 - 160
  • [40] DC electric-field-induced heterophase structure on the surface of a peierls metal
    A. L. Semenov
    Physics of the Solid State, 2000, 42 : 1160 - 1163