Free field realizations for rank-one SCFTs

被引:0
|
作者
Beem, Christopher [1 ]
Deb, Anirudh [2 ]
Martone, Mario [3 ]
Meneghelli, Carlo [4 ,5 ]
Rastelli, Leonardo [2 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] Kings Coll London, Dept Math, London WC2R 2LS, England
[4] Univ Parma, Dipartimento SMFI, Viale GP Usberti 7-A, I-43100 Parma, Italy
[5] INFN, GRP COLLEGATO PARMA, PARMA, Italy
来源
基金
欧盟地平线“2020”;
关键词
Conformal and W Symmetry; Effective Field Theories; Extended Supersymmetry; Supersymmetric Gauge Theory; PROBING F-THEORY;
D O I
10.1007/JHEP12(2024)004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we construct the associated vertex operator algebras for all N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal field theories of rank one. We give a uniform presentation through free-field realizations, which turns out to be a particularly suitable framework for this task. The elementary building blocks of the construction are dictated by the low energy degrees of freedom on the Higgs branch, which are well understood for rank-one theories. We further analyze the interplay between Higgs and Coulomb data on the moduli space of vacua, which tightly constrain the overall structure of the free field realizations. Our results suggest a plausible bottom-up classification scheme for low-rank SCFTs incorporating vertex algebra techniques.
引用
收藏
页数:50
相关论文
共 50 条
  • [41] ON THE REDUCTION OF RANK-ONE DRINFELD MODULES
    HAYES, DR
    MATHEMATICS OF COMPUTATION, 1991, 57 (195) : 339 - 349
  • [42] THE RANK-ONE THEOREM ON RCD SPACES
    Antonelli, Gioacchino
    Brena, Camillo
    Pasqualetto, Enrico
    ANALYSIS & PDE, 2024, 17 (08):
  • [43] ON RANK-ONE COMMUTATORS AND TRIANGULAR REPRESENTATIONS
    MA, TW
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1986, 29 (03): : 268 - 273
  • [44] Rank-one perturbations of matrix pencils
    Baragana, Itziar
    Roca, Alicia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 606 (606) : 170 - 191
  • [45] The Geometry of Rank-One Tensor Completion
    Kahle, Thomas
    Kubjas, Kaie
    Kummer, Mario
    Rosen, Zvi
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 200 - 221
  • [46] On rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 628 - 646
  • [47] On 4d rank-one N=3 superconformal field theories
    Nishinaka, Takahiro
    Tachikawa, Yuji
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [48] Rank-One Matrix Pursuit for Matrix Completion
    Wang, Zheng
    Lai, Ming-Jun
    Lu, Zhaosong
    Fan, Wei
    Davulcu, Hasan
    Ye, Jieping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 91 - 99
  • [49] RANK-ONE MASS MATRIX AND PHENOMENOLOGICAL CONSTRAINTS
    SAMAL, MK
    MODERN PHYSICS LETTERS A, 1992, 7 (09) : 757 - 762
  • [50] Numerical computation of rank-one convex envelopes
    Dolzmann, G
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) : 1621 - 1635