Free field realizations for rank-one SCFTs

被引:0
|
作者
Beem, Christopher [1 ]
Deb, Anirudh [2 ]
Martone, Mario [3 ]
Meneghelli, Carlo [4 ,5 ]
Rastelli, Leonardo [2 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[3] Kings Coll London, Dept Math, London WC2R 2LS, England
[4] Univ Parma, Dipartimento SMFI, Viale GP Usberti 7-A, I-43100 Parma, Italy
[5] INFN, GRP COLLEGATO PARMA, PARMA, Italy
来源
基金
欧盟地平线“2020”;
关键词
Conformal and W Symmetry; Effective Field Theories; Extended Supersymmetry; Supersymmetric Gauge Theory; PROBING F-THEORY;
D O I
10.1007/JHEP12(2024)004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we construct the associated vertex operator algebras for all N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal field theories of rank one. We give a uniform presentation through free-field realizations, which turns out to be a particularly suitable framework for this task. The elementary building blocks of the construction are dictated by the low energy degrees of freedom on the Higgs branch, which are well understood for rank-one theories. We further analyze the interplay between Higgs and Coulomb data on the moduli space of vacua, which tightly constrain the overall structure of the free field realizations. Our results suggest a plausible bottom-up classification scheme for low-rank SCFTs incorporating vertex algebra techniques.
引用
收藏
页数:50
相关论文
共 50 条
  • [21] On the perturbation of rank-one symmetric tensors
    O'Hara, Michael J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (01) : 1 - 12
  • [22] Unfoldings and the rank-one approximation of the tensor
    Zhao, Xinzhu
    Dong, Bo
    Yu, Bo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375
  • [23] On maps preserving rank-one nilpotents
    Catalano, Louisa
    Chang-Lee, Megan
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16): : 3092 - 3098
  • [24] Resonances under rank-one perturbations
    Bourget, Olivier
    Cortes, Victor H.
    Del Rio, Rafael
    Fernandez, Claudio
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [25] The Rank-One Quadratic Assignment Problem
    Wang, Yang
    Yang, Wei
    Punnen, Abraham P.
    Tian, Jingbo
    Yin, Aihua
    Lu, Zhipeng
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (03) : 979 - 996
  • [26] RANK-ONE PERTURBATIONS WITH INFINITESIMAL COUPLING
    KISELEV, A
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) : 345 - 356
  • [27] SETS OF GRADIENTS WITH NO RANK-ONE CONNECTIONS
    BALL, JM
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1990, 69 (03): : 241 - 259
  • [28] Discrimination of POVMs with rank-one effects
    Krawiec, Aleksandra
    Pawela, Lukasz
    Puchala, Zbigniew
    QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [29] Rank-one perturbations of diagonal operators
    Ionascu, EJ
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (04) : 421 - 440
  • [30] Reduction of asymmetry by rank-one matrices
    tenBerge, JMF
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (03) : 357 - 366