Sparse Phase Retrieval for Phaseless Fourier Measurement Based on Riemannian Optimization

被引:0
|
作者
Li, Xiaodong [1 ]
Fu, Ning [1 ]
Liu, Xing [2 ]
Qiao, Liyan [1 ]
Al-Naffouri, Tareq Y. [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150080, Peoples R China
[2] King Abdullah Univ Sci & Technol, Elect & Comp Engn Program, Comp Elect & Math Sci & Engn, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Fourier Transform (FT); Riemannian optimiza- tion; sparse Phase Retrieval (PR); UNIQUENESS; RECOVERY;
D O I
10.1109/LSP.2025.3542207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given the inherent challenges of measuring phase in numerous scenarios, Phase Retrieval (PR)-the task of reconstructing the original signal from phaseless measurements-stands as paramount. The absence of phase often renders prior knowledge about the signal and the structure of phaseless measurements crucial for effective solutions. This paper tackles the Fourier Transform (FT) PR problem for sparse signals. We recast the FT PR as a novel optimization problem on the Riemannian manifold by leveraging the sparsity and structural properties of the measurement. Then, an effective iterative algorithm is developed to address this problem using Riemannian optimization techniques. Numerical simulations validate the effectiveness of the proposed algorithm and demonstrate its superior accuracy compared to the existing methods.
引用
收藏
页码:1006 / 1010
页数:5
相关论文
共 50 条
  • [1] Sparse Signal Phase Retrieval for Phaseless Short-Time Fourier Transform Measurement Based on Local Search
    Li, Xiaodong
    Zheng, Pinjun
    Fu, Ning
    Qiao, Liyan
    Al-Naffouri, Tareq Y.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [2] Riemannian optimization for phase retrieval from masked Fourier measurements
    Li Huiping
    Li Song
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (06)
  • [3] Riemannian optimization for phase retrieval from masked Fourier measurements
    Huiping Li
    Song Li
    Advances in Computational Mathematics, 2021, 47
  • [4] Phaseless Terahertz Coded-Aperture Imaging for Sparse Target Based on Phase Retrieval Algorithm
    Peng, Long
    Luo, Chenggao
    Deng, Bin
    Wang, Hongqiang
    Chen, Shuo
    Dong, Jun
    SENSORS, 2019, 19 (21)
  • [5] Phase retrieval versus phaseless reconstruction
    Botelho-Andrade, Sara
    Casazza, Peter G.
    Hanh Van Nguyen
    Tremain, Janet C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 131 - 137
  • [6] Phase retrieval wavefront measurement model based on the numerical Fourier theory
    Li, Yuejia
    Yang, Yingzhe
    Bai, Jian
    Zhao, Lei
    OPTICAL DESIGN AND TESTING XII, 2023, 12315
  • [7] Sparse Phase Retrieval Using Partial Nested Fourier Samplers
    Qiao, Heng
    Pal, Piya
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 522 - 526
  • [8] Misspecified nonconvex statistical optimization for sparse phase retrieval
    Zhuoran Yang
    Lin F. Yang
    Ethan X. Fang
    Tuo Zhao
    Zhaoran Wang
    Matey Neykov
    Mathematical Programming, 2019, 176 : 545 - 571
  • [9] Misspecified nonconvex statistical optimization for sparse phase retrieval
    Yang, Zhuoran
    Yang, Lin F.
    Fang, Ethan X.
    Zhao, Tuo
    Wang, Zhaoran
    Neykov, Matey
    MATHEMATICAL PROGRAMMING, 2019, 176 (1-2) : 545 - 571
  • [10] Sparse Phase Retrieval from Short-Time Fourier Measurements
    Eldar, Yonina C.
    Sidorenko, Pavel
    Mixon, Dustin G.
    Barel, Shaby
    Cohen, Oren
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (05) : 638 - 642