Sparse Phase Retrieval for Phaseless Fourier Measurement Based on Riemannian Optimization

被引:0
|
作者
Li, Xiaodong [1 ]
Fu, Ning [1 ]
Liu, Xing [2 ]
Qiao, Liyan [1 ]
Al-Naffouri, Tareq Y. [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150080, Peoples R China
[2] King Abdullah Univ Sci & Technol, Elect & Comp Engn Program, Comp Elect & Math Sci & Engn, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Fourier Transform (FT); Riemannian optimiza- tion; sparse Phase Retrieval (PR); UNIQUENESS; RECOVERY;
D O I
10.1109/LSP.2025.3542207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given the inherent challenges of measuring phase in numerous scenarios, Phase Retrieval (PR)-the task of reconstructing the original signal from phaseless measurements-stands as paramount. The absence of phase often renders prior knowledge about the signal and the structure of phaseless measurements crucial for effective solutions. This paper tackles the Fourier Transform (FT) PR problem for sparse signals. We recast the FT PR as a novel optimization problem on the Riemannian manifold by leveraging the sparsity and structural properties of the measurement. Then, an effective iterative algorithm is developed to address this problem using Riemannian optimization techniques. Numerical simulations validate the effectiveness of the proposed algorithm and demonstrate its superior accuracy compared to the existing methods.
引用
收藏
页码:1006 / 1010
页数:5
相关论文
共 50 条
  • [21] Phase Retrieval of Sparse L-ary Signals From Magnitudes of Their Fourier Transform
    Borujeni, Mohsen Shabanian
    Parvaresh, Farzad
    2014 IRAN WORKSHOP ON COMMUNICATION AND INFORMATION THEORY (IWCIT), 2014,
  • [22] Phase Retrieval with Sparse Phase Constraint
    Nguyen Hieu Thao
    Luke, David Russell
    Soloviev, Oleg
    Verhaegen, Michel
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (01): : 246 - 263
  • [23] Phase retrieval using iterative Fourier transform and convex optimization algorithm
    Zhang Fen
    Cheng Hong
    Zhang Quanbing
    Wei Sui
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2015, 2015, 9495
  • [24] Application of Iterative Fourier Method in Cylindrical Phaseless Antenna Measurement Technique
    Puskely, Jan
    RADIOENGINEERING, 2012, 21 (01) : 422 - 429
  • [25] Phase retrieval for sparse signals
    Wang, Yang
    Xu, Zhiqiang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (03) : 531 - 544
  • [26] Polarimetric Fourier Phase Retrieval
    Flamant, Julien
    Usevich, Konstantin
    Clausel, Marianne
    Brie, David
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (01): : 632 - 671
  • [27] On the Stability of Fourier Phase Retrieval
    Stefan Steinerberger
    Journal of Fourier Analysis and Applications, 2022, 28
  • [29] Sparse phase retrieval using a physics-informed neural network for Fourier ptychographic microscopy
    Zhang, Z. H. O. N. G. H. U. A.
    Wang, T. I. A. N.
    Feng, S. H. A. O. W. E., I
    Yang, Y. O. N. G. X. I. N.
    Lai, C. H. U. N. H. O. N. G.
    LI, X. I. N. W. E. I.
    Shao, L. I. Z. H. I.
    Jiang, X. I. A. O. M. I. N. G.
    OPTICS LETTERS, 2022, 47 (19) : 4909 - 4912
  • [30] COMPRESSIVE PHASE RETRIEVAL BASED ON SPARSE LATENT GENERATIVE PRIORS
    Killedar, Vinayak
    Seelamantula, Chandra Sekhar
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1596 - 1600