A novel technique of image encryption through projective coordinates of elliptic curve

被引:0
|
作者
Hafeez Ur Hafsa [1 ]
Tariq Rehman [2 ]
Ali Yahya Shah [1 ]
undefined Hummdi [3 ]
机构
[1] Quaid-I-Azam University,Department of Mathematics
[2] National University of Computer and Emerging Sciences,Department of Sciences and Humanities
[3] King Khalid University,Department of Mathematics
关键词
Elliptic curve; Projective coordinates; Substitution boxes; Nonlinearity; Pseudo-Random Numbers; Image encryption;
D O I
10.1007/s11042-024-19598-7
中图分类号
学科分类号
摘要
Efficient multiple pseudo-random number sequences (PRNS) and substitution boxes (S-boxes) are two of the most consequential construction blocks jointly assumed commonly for secure data encryption. Multiple aspects pave the way to address large-scale multimedia data. However, the computational efforts on multiple constructions may limit the required ciphering. Therefore, reducing the computational cost of various patterns, such as PRNS and S-boxes, is the core requirement for an efficient cryptosystem. For this achievement, this article addresses the challenge of constructing secure S-boxes with enhanced nonlinearity (NL) and keyspace in image encryption. Our technique aims to bolster security in digital image encryption methods by prioritizing robustness over conventional complexity. We present a novel and efficient cryptosystem that utilizes Projective Coordinates (PCs) of Elliptic Curves (ECs) for encrypting digital images. Initially, we leverage the power of PCs of ECs over the set of integers modulo pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}^{r}$$\end{document}, where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is prime and r=9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 9$$\end{document}. Using ECs and applying trace mappings, we create optimal 8×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\times 8$$\end{document} S-boxes for pixel substitution in digital images. Moreover, the proposed scheme generates 2108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2}^{108}$$\end{document} S-boxes in a single case of the proposed scheme. In addition, Pseudo-Random Numbers (PRNs) are generated from ECs over modulo pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}^{r}$$\end{document} to enhance security. Further, computational experiments demonstrate that our proposed cryptosystem offers superior protection against linear, differential, and statistical attacks compared to existing cryptosystems.
引用
收藏
页码:2651 / 2688
页数:37
相关论文
共 50 条
  • [31] Biometric Encryption using Enhanced Finger Print Image and Elliptic Curve
    Sagayee, G. Mary Amirtha
    Arumugam, S.
    Mala, G. S. Anandha
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2013, 13 (07): : 106 - 112
  • [32] Biometric encryption using enhanced finger print image and elliptic curve
    Sagayee, G. Mary Amirtha
    Arumugam, S.
    Mala, G. S. Anandha
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2013, 5 (02) : 110 - 123
  • [33] A secure authenticated image encryption scheme based on elliptic curve cryptography
    Jnana Ramakrishna C.
    Bharath Kalyan Reddy D.
    Amritha P.P.
    Lakshmy K.V.
    Sachnev V.
    International Journal of Computers and Applications, 2024, 46 (03) : 184 - 193
  • [34] An efficient image encryption scheme for TMIS based on elliptic curve integrated encryption and linear cryptography
    Benssalah, Mustapha
    Rhaskali, Yesser
    Drouiche, Karim
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (02) : 2081 - 2107
  • [35] An efficient image encryption scheme for TMIS based on elliptic curve integrated encryption and linear cryptography
    Mustapha Benssalah
    Yesser Rhaskali
    Karim Drouiche
    Multimedia Tools and Applications, 2021, 80 : 2081 - 2107
  • [36] Securing CoAP Through Payload Encryption: Using Elliptic Curve Cryptography
    Harish, M.
    Karthick, R.
    Rajan, R. Mohan
    Vetriselvi, V.
    ICCCE 2018, 2019, 500 : 497 - 511
  • [37] Novel Scheme for Storage and Transmission of Medical Images with Patient Information Using Elliptic Curve Based Image Encryption Schemes with LSB Based Steganographic Technique
    Sathyanarayana, S. V.
    Bhat, K. N. Hari
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2012, 2 (01) : 15 - 24
  • [38] A fast addition algorithm for elliptic curve arithmetic in GF(2n) using projective coordinates
    Higuchi, A
    Takagi, N
    INFORMATION PROCESSING LETTERS, 2000, 76 (03) : 101 - 103
  • [39] A new image encryption scheme based on cyclic elliptic curve and chaotic system
    Ahmed A. Abd El-Latif
    Li Li
    Xiamu Niu
    Multimedia Tools and Applications, 2014, 70 : 1559 - 1584
  • [40] Dynamic Fractional Chaotic Biometric Isomorphic Elliptic Curve for Partial Image Encryption
    Kamal, Ahmed
    Hagras, Esam A. A.
    El-Kamchochi, H. A.
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (03) : 1057 - 1076