A novel technique of image encryption through projective coordinates of elliptic curve

被引:0
|
作者
Hafeez Ur Hafsa [1 ]
Tariq Rehman [2 ]
Ali Yahya Shah [1 ]
undefined Hummdi [3 ]
机构
[1] Quaid-I-Azam University,Department of Mathematics
[2] National University of Computer and Emerging Sciences,Department of Sciences and Humanities
[3] King Khalid University,Department of Mathematics
关键词
Elliptic curve; Projective coordinates; Substitution boxes; Nonlinearity; Pseudo-Random Numbers; Image encryption;
D O I
10.1007/s11042-024-19598-7
中图分类号
学科分类号
摘要
Efficient multiple pseudo-random number sequences (PRNS) and substitution boxes (S-boxes) are two of the most consequential construction blocks jointly assumed commonly for secure data encryption. Multiple aspects pave the way to address large-scale multimedia data. However, the computational efforts on multiple constructions may limit the required ciphering. Therefore, reducing the computational cost of various patterns, such as PRNS and S-boxes, is the core requirement for an efficient cryptosystem. For this achievement, this article addresses the challenge of constructing secure S-boxes with enhanced nonlinearity (NL) and keyspace in image encryption. Our technique aims to bolster security in digital image encryption methods by prioritizing robustness over conventional complexity. We present a novel and efficient cryptosystem that utilizes Projective Coordinates (PCs) of Elliptic Curves (ECs) for encrypting digital images. Initially, we leverage the power of PCs of ECs over the set of integers modulo pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}^{r}$$\end{document}, where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is prime and r=9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 9$$\end{document}. Using ECs and applying trace mappings, we create optimal 8×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\times 8$$\end{document} S-boxes for pixel substitution in digital images. Moreover, the proposed scheme generates 2108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2}^{108}$$\end{document} S-boxes in a single case of the proposed scheme. In addition, Pseudo-Random Numbers (PRNs) are generated from ECs over modulo pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}^{r}$$\end{document} to enhance security. Further, computational experiments demonstrate that our proposed cryptosystem offers superior protection against linear, differential, and statistical attacks compared to existing cryptosystems.
引用
收藏
页码:2651 / 2688
页数:37
相关论文
共 50 条
  • [21] An image encryption scheme based on elliptic curve pseudo random and Advanced Encryption System
    Toughi, Shahryar
    Fathi, Mohammad H.
    Sekhavat, Yoones A.
    SIGNAL PROCESSING, 2017, 141 : 217 - 227
  • [22] Digital Image Encryption Algorithm Based on Elliptic Curve Public Cryptosystem
    Zhang, Xiaoqiang
    Wang, Xuesong
    IEEE ACCESS, 2018, 6 : 70025 - 70034
  • [23] Proposed Image Encryption Algorithm based on Paillier and Elliptic Curve Algebra
    Muneef, Zainab Mohammed
    Wahab, Hala Bahjat Abdul
    Hossen, Abdul Mohssen Jaber Abdul
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 302 - 306
  • [24] Mixed image element encryption algorithm based on an elliptic curve cryptosystem
    Zhu, Gui-Liang
    Zhang, Xiao-Qiang
    JOURNAL OF ELECTRONIC IMAGING, 2008, 17 (02)
  • [25] Image Encryption Based on Elliptic Curve Points and Linear Fractional Transformation
    Jamal, Sajjad Shaukat
    Bassfar, Zaid
    Lahlou, Ouafae
    Aljaedi, Amer
    Hazzazi, Mohammad Mazyad
    IEEE ACCESS, 2024, 12 : 53335 - 53347
  • [26] Novel image encryption algorithm utilizing hybrid chaotic maps and Elliptic Curve Cryptography with genetic algorithm
    Pandey, Kartikey
    Sharma, Deepmala
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2025, 89
  • [27] Double image encryption algorithm based on compressive sensing and elliptic curve
    Ye, Guodong
    Liu, Min
    Wu, Mingfa
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (09) : 6785 - 6795
  • [28] Secret image encryption based on chaotic system and elliptic curve cryptography
    Banik, Arpita
    Singh, Laiphrakpam Dolendro
    Agrawal, Amit
    Patgiri, Ripon
    DIGITAL SIGNAL PROCESSING, 2022, 129
  • [29] Image Encryption and Authentication With Elliptic Curve Cryptography and Multidimensional Chaotic Maps
    Parida, Priyansi
    Pradhan, Chittaranjan
    Gao, Xiao-Zhi
    Roy, Diptendu Sinha
    Barik, Rabindra Kumar
    IEEE ACCESS, 2021, 9 : 76191 - 76204
  • [30] A New Technique to Improve the Security of Elliptic Curve Encryption and Signature Schemes
    Aung, Tun Myat
    Hla, Ni Ni
    FUTURE DATA AND SECURITY ENGINEERING (FDSE 2019), 2019, 11814 : 371 - 382