Bayesian design for sampling anomalous spatio-temporal data

被引:0
|
作者
Katie Buchhorn [1 ]
Kerrie Mengersen [2 ]
Edgar Santos-Fernandez [1 ]
James McGree [2 ]
机构
[1] Queensland University of Technology,School of Mathematical Sciences
[2] Queensland University of Technology,Centre for Data Science
关键词
Anomaly detection; Optimal experimental design; Robust design; Sensor data; Spatio-temporal model; Spatial model;
D O I
10.1007/s11222-025-10594-x
中图分类号
学科分类号
摘要
Data collected from arrays of sensors are essential for informed decision-making in various systems. However, the presence of anomalies can compromise the accuracy and reliability of insights drawn from the collected data or information obtained via statistical analysis. This study aims to develop a robust Bayesian optimal experimental design framework with anomaly detection methods for high-quality data collection. We introduce a general framework that involves anomaly generation, detection and error scoring when searching for an optimal design. This method is demonstrated using two comprehensive simulated case studies: the first study uses a spatial dataset, and the second uses a spatio-temporal river network dataset. As a baseline approach, we employed a commonly used prediction-based utility function based on minimising errors. Results illustrate the trade-off between predictive accuracy and anomaly detection performance for our method under various design scenarios. An optimal design robust to anomalies ensures the collection and analysis of more trustworthy data, playing a crucial role in understanding the dynamics of complex systems such as the environment, therefore enabling informed decisions in monitoring, management, and response.
引用
收藏
相关论文
共 50 条
  • [21] Bayesian inference for a spatio-temporal model of road traffic collision data
    Hewett, Nicola
    Golightly, Andrew
    Fawcett, Lee
    Thorpe, Neil
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 80
  • [22] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [23] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [24] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [25] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    MATHEMATICS, 2022, 10 (10)
  • [26] Spatio-Temporal Data Construction
    Le, Hai Ha
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [27] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [28] BAYESIAN MODELS FOR SPATIO-TEMPORAL ASSESSMENT OF DISEASE
    Kang, Su Yun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) : 516 - 518
  • [29] Bayesian spatio-temporal model for tuberculosis in India
    Srinivasan, R.
    Venkatesan, P.
    INDIAN JOURNAL OF MEDICAL RESEARCH, 2015, 141 : 478 - 480
  • [30] A Bayesian hierarchical spatio-temporal rainfall model
    Mashford, John
    Song, Yong
    Wang, Q. J.
    Robertson, David
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (02) : 217 - 229