Temporal Second-order Scheme for a Hidden-memory Variable Order Time Fractional Diffusion Equation with an Initial Singularity

被引:0
|
作者
Rui-lian Du [1 ]
Zhi-zhong Sun [2 ]
机构
[1] Changzhou University,School of Big Data
[2] Shanghai University,Department of Mathematics
[3] Southeast University,School of Mathematics
关键词
time fractional diffusion equation; hidden-memory variable-order fractional derivative; error estimate; initial singularity; 65M06; 65M15;
D O I
10.1007/s10255-024-1054-2
中图分类号
学科分类号
摘要
In this work, a novel time-stepping L1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{L1}$$\end{document} formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity. This formula can obtain second-order accuracy and an error estimate is analyzed strictly. As an application, a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model. Numerical experiments are provided to support our theoretical results.
引用
收藏
页码:1060 / 1077
页数:17
相关论文
共 50 条
  • [41] Stability analysis of a second-order difference scheme for the time-fractional mixed sub-diffusion and diffusion-wave equation
    Alikhanov, Anatoly A.
    Asl, Mohammad Shahbazi
    Huang, Chengming
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (01) : 102 - 123
  • [42] A second-order energy stable and nonuniform time-stepping scheme for time fractional Burgers' equation
    Shen, Jin-ye
    Ren, Jincheng
    Chen, Shanzhen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 123 : 227 - 240
  • [43] Stability analysis of a second-order difference scheme for the time-fractional mixed sub-diffusion and diffusion-wave equation
    Anatoly A. Alikhanov
    Mohammad Shahbazi Asl
    Chengming Huang
    Fractional Calculus and Applied Analysis, 2024, 27 : 102 - 123
  • [44] A second-order accurate numerical scheme for a time-fractional Fokker-Planck equation
    Mustapha, Kassem
    Knio, Omar M.
    Le Maitre, Olivier P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 2115 - 2136
  • [45] A second-order implicit difference scheme for the nonlinear time-space fractional Schrodinger equation
    Fei, Mingfa
    Wang, Nan
    Huang, Chengming
    Ma, Xiaohua
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 399 - 411
  • [46] A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (02) : 396 - 411
  • [47] Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection-Diffusion Equation
    Gu, Xian-Ming
    Huang, Ting-Zhu
    Ji, Cui-Cui
    Carpentieri, Bruno
    Alikhanov, Anatoly A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) : 957 - 985
  • [48] Temporal second-order difference schemes for the nonlinear time-fractional mixed sub-diffusion and diffusion-wave equation with delay
    Alikhanov, Anatoly A.
    Asl, Mohammad Shahbazi
    Huang, Chengming
    Apekov, Aslan M.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 464
  • [49] Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order
    Zheng, Xiangcheng
    Wang, Hong
    Guo, Xu
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [50] Second-order approximations for variable order fractional derivatives: Algorithms and applications
    Zhao, Xuan
    Sun, Zhi-zhong
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 184 - 200