Temporal Second-order Scheme for a Hidden-memory Variable Order Time Fractional Diffusion Equation with an Initial Singularity

被引:0
|
作者
Rui-lian Du [1 ]
Zhi-zhong Sun [2 ]
机构
[1] Changzhou University,School of Big Data
[2] Shanghai University,Department of Mathematics
[3] Southeast University,School of Mathematics
关键词
time fractional diffusion equation; hidden-memory variable-order fractional derivative; error estimate; initial singularity; 65M06; 65M15;
D O I
10.1007/s10255-024-1054-2
中图分类号
学科分类号
摘要
In this work, a novel time-stepping L1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{L1}$$\end{document} formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity. This formula can obtain second-order accuracy and an error estimate is analyzed strictly. As an application, a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model. Numerical experiments are provided to support our theoretical results.
引用
收藏
页码:1060 / 1077
页数:17
相关论文
共 50 条
  • [31] A second-order accurate numerical approximation for the fractional diffusion equation
    Tadjeran, C
    Meerschaert, MM
    Scheffler, HP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 213 (01) : 205 - 213
  • [32] A linearized second-order finite difference scheme for time fractional generalized BBM equation
    Lyu, Pin
    Vong, Seakweng
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 16 - 23
  • [33] Time second-order splitting conservative difference scheme for nonlinear fractional Schrodinger equation
    Xie, Jianqiang
    Ali, Muhammad Aamir
    Zhang, Zhiyue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 1411 - 1422
  • [34] Du Fort-Frankel Scheme for the Variable Order Time Fractional Diffusion Equation
    Azizi, H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (02) : 21 - 35
  • [35] A second-order BDF compact difference scheme for fractional-order Volterra equation
    Chen, Hongbin
    Gan, Siqing
    Xu, Da
    Liu, Qiwen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) : 1140 - 1154
  • [36] TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME-FRACTIONAL WAVE EQUATIONS
    Du, Rui-lian
    Sun, Zhi-zhong
    Wang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (01) : 104 - 132
  • [37] Second order difference schemes for time-fractional KdV-Burgers' equation with initial singularity
    Cen, Dakang
    Wang, Zhibo
    Mo, Yan
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [38] Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation
    Xian-Ming Gu
    Ting-Zhu Huang
    Cui-Cui Ji
    Bruno Carpentieri
    Anatoly A. Alikhanov
    Journal of Scientific Computing, 2017, 72 : 957 - 985
  • [39] On a second order scheme for space fractional diffusion equations with variable coefficients
    Vong, Seakweng
    Lyu, Pin
    APPLIED NUMERICAL MATHEMATICS, 2019, 137 : 34 - 48
  • [40] Numerical techniques for the variable order time fractional diffusion equation
    Shen, S.
    Liu, F.
    Chen, J.
    Turner, I.
    Anh, V.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) : 10861 - 10870