Temporal Second-order Scheme for a Hidden-memory Variable Order Time Fractional Diffusion Equation with an Initial Singularity

被引:0
|
作者
Rui-lian Du [1 ]
Zhi-zhong Sun [2 ]
机构
[1] Changzhou University,School of Big Data
[2] Shanghai University,Department of Mathematics
[3] Southeast University,School of Mathematics
关键词
time fractional diffusion equation; hidden-memory variable-order fractional derivative; error estimate; initial singularity; 65M06; 65M15;
D O I
10.1007/s10255-024-1054-2
中图分类号
学科分类号
摘要
In this work, a novel time-stepping L1¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{L1}$$\end{document} formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity. This formula can obtain second-order accuracy and an error estimate is analyzed strictly. As an application, a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model. Numerical experiments are provided to support our theoretical results.
引用
收藏
页码:1060 / 1077
页数:17
相关论文
共 50 条