Predicting the risk of diabetes complications using machine learning and social administrative data in a country with ethnic inequities in health: Aotearoa New Zealand

被引:0
|
作者
Nhung Nghiem [1 ]
Nick Wilson [2 ]
Jeremy Krebs [1 ]
Truyen Tran [3 ]
机构
[1] University of Otago Wellington,Department of Public Health
[2] Australian National University,John Curtin School of Medical Research
[3] University of Otago Wellington,Department of Medicine
[4] Deakin University,Applied Artificial Intelligence Institute (A2I2)
关键词
Machine learning; Diabetes complications; Cardiovascular disease; Risk prediction; Health and social administrative data;
D O I
10.1186/s12911-024-02678-x
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [21] Unmet need for gender-affirming care as a social determinant of mental health inequities for transgender youth in Aotearoa/New Zealand
    Tan, Kyle K. H.
    Byrne, Jack L.
    Treharne, Gareth J.
    Veale, Jaimie F.
    JOURNAL OF PUBLIC HEALTH, 2023, 45 (02) : E225 - E233
  • [22] Predicting the risk of gestational diabetes using clinical data with machine learning: a predictive model study
    Kadambi, Adesh
    Fulcher, Isabel
    Venkatesh, Kartik
    Schor, Jonathan S.
    Clapp, Mark A.
    Wen, Timothy
    AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2023, 5 (07)
  • [23] Parents' education and Pasifika children's oral health in Aotearoa/New Zealand: A national linked data study using Aotearoa/New Zealand's integrated data infrastructure
    Ruhe, Troy
    Broadbent, Jonathan M.
    Schluter, Philip J.
    Bowden, Nicholas
    Theodore, Reremoana
    Richards, Rosalina
    Kokaua, Jesse
    COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY, 2023, 51 (05) : 936 - 944
  • [24] Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes
    Ravaut, Mathieu
    Harish, Vinyas
    Sadeghi, Hamed
    Leung, Kin Kwan
    Volkovs, Maksims
    Kornas, Kathy
    Watson, Tristan
    Poutanen, Tomi
    Rosella, Laura C.
    JAMA NETWORK OPEN, 2021, 4 (05) : E2111315
  • [25] Estimating the cost of complications of diabetes in Australia using administrative health-care data
    Clarke, Philip
    Leal, Jose
    Kelman, Chris
    Smith, Merran
    Colagiuri, Stephen
    VALUE IN HEALTH, 2008, 11 (02) : 199 - 206
  • [26] Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning
    Sharen Lee
    Jiandong Zhou
    Wing Tak Wong
    Tong Liu
    William K. K. Wu
    Ian Chi Kei Wong
    Qingpeng Zhang
    Gary Tse
    BMC Endocrine Disorders, 21
  • [27] Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning
    Lee, Sharen
    Zhou, Jiandong
    Wong, Wing Tak
    Liu, Tong
    Wu, William K. K.
    Wong, Ian Chi Kei
    Zhang, Qingpeng
    Tse, Gary
    BMC ENDOCRINE DISORDERS, 2021, 21 (01)
  • [28] Linkage of data in the study of ethnic inequalities and inequities in health outcomes in Scotland, New Zealand and the Netherlands: Insights for global study of ethnicity and health
    Johnman, C.
    Blakely, T.
    Bansal, N.
    Agyemang, C.
    Ward, H.
    PUBLIC HEALTH, 2012, 126 (03) : 245 - 247
  • [29] Predicting return to work after traumatic brain injury using machine learning and administrative data
    Van Deynse, Helena
    Cools, Wilfried
    De Deken, Viktor-Jan
    Depreitere, Bart
    Hubloue, Ives
    Kimpe, Eva
    Moens, Maarten
    Pien, Karen
    Tisseghem, Ellen
    Van Belleghem, Griet
    Putman, Koen
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 178
  • [30] Predicting Diabetes Diseases Using Mixed Data and Supervised Machine Learning Algorithms
    Daanouni, Othmane
    Cherradi, Bouchaib
    Tmiri, Amal
    4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,