Predicting the risk of gestational diabetes using clinical data with machine learning: a predictive model study

被引:0
|
作者
Kadambi, Adesh [1 ]
Fulcher, Isabel [1 ]
Venkatesh, Kartik [1 ,2 ]
Schor, Jonathan S. [1 ,3 ,4 ]
Clapp, Mark A. [1 ]
Wen, Timothy [5 ]
机构
[1] Delfina Care Inc, San Francisco, CA USA
[2] Univ Toronto, Dept Biomed Engn, Toronto, ON, Canada
[3] Ohio State Univ, Dept Obstet & Gynecol, Div Maternal Fetal Med, Med Ctr, Columbus, OH USA
[4] Univ Calif San Francisco, Med Scientist Training Program, San Francisco, CA USA
[5] Univ Toronto, Dept Biomed Engn, Div Maternal Fetal Med, Toronto, ON, Canada
关键词
D O I
10.1016/j.ajogmf.2023.100965
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Predicting youth diabetes risk using NHANES data and machine learning
    Vangeepuram, Nita
    Liu, Bian
    Chiu, Po-Hsiang
    Wang, Linhua
    Pandey, Gaurav
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Predicting youth diabetes risk using NHANES data and machine learning
    Nita Vangeepuram
    Bian Liu
    Po-hsiang Chiu
    Linhua Wang
    Gaurav Pandey
    [J]. Scientific Reports, 11
  • [3] Comparison of Machine Learning Methods and Conventional Logistic Regressions for Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective Cohort Study
    Ye, Yunzhen
    Xiong, Yu
    Zhou, Qiongjie
    Wu, Jiangnan
    Li, Xiaotian
    Xiao, Xirong
    [J]. JOURNAL OF DIABETES RESEARCH, 2020, 2020
  • [4] Prognosis Model for Gestational Diabetes Using Machine Learning Techniques
    Amarnath, Sumathi
    Selvamani, Meganathan
    Varadarajan, Vijayakumar
    [J]. SENSORS AND MATERIALS, 2021, 33 (09) : 3011 - 3025
  • [5] A Predictive Model for Diabetes Mellitus Using Machine Learning Techniques (A Study in Nigeria)
    Evwiekpaefe, Abraham Eseoghene
    Abdulkadir, Nafisat
    [J]. AFRICAN JOURNAL OF INFORMATION SYSTEMS, 2023, 15 (01):
  • [6] Machine Learning Model for Predicting CVD Risk on NHANES Data
    Klados, G. A.
    Politof, K.
    Bei, E. S.
    Moirogiorgou, K.
    Anousakis-Vlachochristou, N.
    Matsopoulos, G. K.
    Zervakis, M.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1749 - 1752
  • [7] Automated Machine Learning (AutoML)-Derived Preconception Predictive Risk Model to Guide Early Intervention for Gestational Diabetes Mellitus
    Kumar, Mukkesh
    Ang, Li Ting
    Png, Hang
    Ng, Maisie
    Tan, Karen
    Loy, See Ling
    Tan, Kok Hian
    Chan, Jerry Kok Yen
    Godfrey, Keith M.
    Chan, Shiao-yng
    Chong, Yap Seng
    Eriksson, Johan G.
    Feng, Mengling
    Karnani, Neerja
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (11)
  • [8] Using machine learning to predict the risk of developing gestational diabetes using a contemporary cohort
    Kadambi, Adesh
    Fulcher, Isabel
    Schor, Jonathan
    Ebrahim, Ali
    Ebrahim, Senan
    Wen, Timothy
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 228 (01) : S752 - S753
  • [9] Machine learning model for predicting malaria using clinical information
    Lee, You Won
    Choi, Jae Woo
    Shin, Eun-Hee
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 129
  • [10] A novel prediction model of the risk of pancreatic cancer among diabetes patients using multiple clinical data and machine learning
    Chen, Shih-Min
    Phuc, Phan Thanh
    Nguyen, Phung-Anh
    Burton, Whitney
    Lin, Shwu-Jiuan
    Lin, Weei-Chin
    Lu, Christine Y.
    Hsu, Min-Huei
    Cheng, Chi-Tsun
    Hsu, Jason C.
    [J]. CANCER MEDICINE, 2023, 12 (19): : 19987 - 19999