Best practices for differential accessibility analysis in single-cell epigenomics

被引:2
|
作者
Alan Yue Yang Teo [1 ]
Jordan W. Squair [2 ]
Gregoire Courtine [1 ]
Michael A. Skinnider [2 ]
机构
[1] EPFL/CHUV/UNIL,Defitech Center for Interventional Neurotherapies (.NeuroRestore)
[2] Swiss Federal Institute of Technology (EPFL),NeuroX Institute and Brain Mind Institute, School of Life Sciences
[3] Lausanne University Hospital (CHUV) and University of Lausanne (UNIL),Department of Clinical Neuroscience
[4] Princeton University,Lewis
[5] Princeton University,Sigler Institute for Integrative Genomics
关键词
D O I
10.1038/s41467-024-53089-5
中图分类号
学科分类号
摘要
Differential accessibility (DA) analysis of single-cell epigenomics data enables the discovery of regulatory programs that establish cell type identity and steer responses to physiological and pathophysiological perturbations. While many statistical methods to identify DA regions have been developed, the principles that determine the performance of these methods remain unclear. As a result, there is no consensus on the most appropriate statistical methods for DA analysis of single-cell epigenomics data. Here, we present a systematic evaluation of statistical methods that have been applied to identify DA regions in single-cell ATAC-seq (scATAC-seq) data. We leverage a compendium of scATAC-seq experiments with matching bulk ATAC-seq or scRNA-seq in order to assess the accuracy, bias, robustness, and scalability of each statistical method. The structure of our experiments also provides the opportunity to define best practices for the analysis of scATAC-seq data beyond DA itself. We leverage this understanding to develop an R package implementing these best practices.
引用
收藏
相关论文
共 50 条
  • [41] Characterizing cis-regulatory elements using single-cell epigenomics
    Preissl, Sebastian
    Gaulton, Kyle J.
    Ren, Bing
    NATURE REVIEWS GENETICS, 2023, 24 (01) : 21 - 43
  • [42] A review of single-cell transcriptomics and epigenomics studies in maternal and child health
    Shu, Chang
    Street, Kelly
    Breton, Carrie, V
    Bastain, Theresa M.
    Wilson, Melissa L.
    EPIGENOMICS, 2024, 16 (10) : 775 - 793
  • [43] Enterprise Accessibility Best Practices
    不详
    REHABILITATION, 2020, 59 (04) : 199 - 199
  • [44] Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution
    Shema, Efrat
    Bernstein, Bradley E.
    Buenrostro, Jason D.
    NATURE GENETICS, 2019, 51 (01) : 19 - 25
  • [45] Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution
    Efrat Shema
    Bradley E. Bernstein
    Jason D. Buenrostro
    Nature Genetics, 2019, 51 : 19 - 25
  • [46] ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
    Granja, Jeffrey M.
    Corces, M. Ryan
    Pierce, Sarah E.
    Bagdatli, S. Tansu
    Choudhry, Hani
    Chang, Howard Y.
    Greenleaf, William J.
    NATURE GENETICS, 2021, 53 (03) : 403 - +
  • [47] Single cell epigenomics
    Tanay, A.
    FEBS JOURNAL, 2017, 284 : 36 - 36
  • [48] Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity
    Stephen J. Clark
    Heather J. Lee
    Sébastien A. Smallwood
    Gavin Kelsey
    Wolf Reik
    Genome Biology, 17
  • [49] Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity
    Clark, Stephen J.
    Lee, Heather J.
    Smallwood, Sebastien A.
    Kelsey, Gavin
    Reik, Wolf
    GENOME BIOLOGY, 2016, 17
  • [50] APEC: an accesson-based method for single-cell chromatin accessibility analysis
    Bin Li
    Young Li
    Kun Li
    Lianbang Zhu
    Qiaoni Yu
    Pengfei Cai
    Jingwen Fang
    Wen Zhang
    Pengcheng Du
    Chen Jiang
    Jun Lin
    Kun Qu
    Genome Biology, 21