Best practices for differential accessibility analysis in single-cell epigenomics

被引:2
|
作者
Alan Yue Yang Teo [1 ]
Jordan W. Squair [2 ]
Gregoire Courtine [1 ]
Michael A. Skinnider [2 ]
机构
[1] EPFL/CHUV/UNIL,Defitech Center for Interventional Neurotherapies (.NeuroRestore)
[2] Swiss Federal Institute of Technology (EPFL),NeuroX Institute and Brain Mind Institute, School of Life Sciences
[3] Lausanne University Hospital (CHUV) and University of Lausanne (UNIL),Department of Clinical Neuroscience
[4] Princeton University,Lewis
[5] Princeton University,Sigler Institute for Integrative Genomics
关键词
D O I
10.1038/s41467-024-53089-5
中图分类号
学科分类号
摘要
Differential accessibility (DA) analysis of single-cell epigenomics data enables the discovery of regulatory programs that establish cell type identity and steer responses to physiological and pathophysiological perturbations. While many statistical methods to identify DA regions have been developed, the principles that determine the performance of these methods remain unclear. As a result, there is no consensus on the most appropriate statistical methods for DA analysis of single-cell epigenomics data. Here, we present a systematic evaluation of statistical methods that have been applied to identify DA regions in single-cell ATAC-seq (scATAC-seq) data. We leverage a compendium of scATAC-seq experiments with matching bulk ATAC-seq or scRNA-seq in order to assess the accuracy, bias, robustness, and scalability of each statistical method. The structure of our experiments also provides the opportunity to define best practices for the analysis of scATAC-seq data beyond DA itself. We leverage this understanding to develop an R package implementing these best practices.
引用
收藏
相关论文
共 50 条
  • [31] Single-cell mRNA quantification and differential analysis with Census
    Qiu, Xiaojie
    Hill, Andrew
    Packer, Jonathan
    Lin, Dejun
    Ma, Yi-An
    Trapnell, Cole
    NATURE METHODS, 2017, 14 (03) : 309 - +
  • [32] Single-cell mRNA quantification and differential analysis with Census
    Qiu X.
    Hill A.
    Packer J.
    Lin D.
    Ma Y.-A.
    Trapnell C.
    Nature Methods, 2017, 14 (3) : 309 - 315
  • [33] Bayesian approach to single-cell differential expression analysis
    Kharchenko P.V.
    Silberstein L.
    Scadden D.T.
    Nature Methods, 2014, 11 (7) : 740 - 742
  • [34] Bayesian approach to single-cell differential expression analysis
    Kharchenko, Peter V.
    Silberstein, Lev
    Scadden, David T.
    NATURE METHODS, 2014, 11 (07) : 740 - U184
  • [35] Characterizing cis-regulatory elements using single-cell epigenomics
    Sebastian Preissl
    Kyle J. Gaulton
    Bing Ren
    Nature Reviews Genetics, 2023, 24 : 21 - 43
  • [36] Interpreting type 1 diabetes risk with genetics and single-cell epigenomics
    Joshua Chiou
    Ryan J. Geusz
    Mei-Lin Okino
    Jee Yun Han
    Michael Miller
    Rebecca Melton
    Elisha Beebe
    Paola Benaglio
    Serina Huang
    Katha Korgaonkar
    Sandra Heller
    Alexander Kleger
    Sebastian Preissl
    David U. Gorkin
    Maike Sander
    Kyle J. Gaulton
    Nature, 2021, 594 : 398 - 402
  • [37] Discrete latent embeddings illuminate cellular diversity in single-cell epigenomics
    Wei, Zhi
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (05): : 316 - 317
  • [38] Single-cell epigenomics and spatiotemporal transcriptomics reveal human cerebellar development
    Suijuan Zhong
    Mengdi Wang
    Luwei Huang
    Youqiao Chen
    Yuxin Ge
    Jiyao Zhang
    Yingchao Shi
    Hao Dong
    Xin Zhou
    Bosong Wang
    Tian Lu
    Xiaoxi Jing
    Yufeng Lu
    Junjing Zhang
    Xiaoqun Wang
    Qian Wu
    Nature Communications, 14
  • [39] Interpreting type 1 diabetes risk with genetics and single-cell epigenomics
    Chiou, Joshua
    Geusz, Ryan J.
    Okino, Mei-Lin
    Han, Jee Yun
    Miller, Michael
    Melton, Rebecca
    Beebe, Elisha
    Benaglio, Paola
    Huang, Serina
    Korgaonkar, Katha
    Heller, Sandra
    Kleger, Alexander
    Preissl, Sebastian
    Gorkin, David U.
    Sander, Maike
    Gaulton, Kyle J.
    NATURE, 2021, 594 (7863) : 398 - +
  • [40] Single-cell epigenomics and spatiotemporal transcriptomics reveal human cerebellar development
    Zhong, Suijuan
    Wang, Mengdi
    Huang, Luwei
    Chen, Youqiao
    Ge, Yuxin
    Zhang, Jiyao
    Shi, Yingchao
    Dong, Hao
    Zhou, Xin
    Wang, Bosong
    Lu, Tian
    Jing, Xiaoxi
    Lu, Yufeng
    Zhang, Junjing
    Wang, Xiaoqun
    Wu, Qian
    NATURE COMMUNICATIONS, 2023, 14 (01)