Best practices for differential accessibility analysis in single-cell epigenomics

被引:2
|
作者
Alan Yue Yang Teo [1 ]
Jordan W. Squair [2 ]
Gregoire Courtine [1 ]
Michael A. Skinnider [2 ]
机构
[1] EPFL/CHUV/UNIL,Defitech Center for Interventional Neurotherapies (.NeuroRestore)
[2] Swiss Federal Institute of Technology (EPFL),NeuroX Institute and Brain Mind Institute, School of Life Sciences
[3] Lausanne University Hospital (CHUV) and University of Lausanne (UNIL),Department of Clinical Neuroscience
[4] Princeton University,Lewis
[5] Princeton University,Sigler Institute for Integrative Genomics
关键词
D O I
10.1038/s41467-024-53089-5
中图分类号
学科分类号
摘要
Differential accessibility (DA) analysis of single-cell epigenomics data enables the discovery of regulatory programs that establish cell type identity and steer responses to physiological and pathophysiological perturbations. While many statistical methods to identify DA regions have been developed, the principles that determine the performance of these methods remain unclear. As a result, there is no consensus on the most appropriate statistical methods for DA analysis of single-cell epigenomics data. Here, we present a systematic evaluation of statistical methods that have been applied to identify DA regions in single-cell ATAC-seq (scATAC-seq) data. We leverage a compendium of scATAC-seq experiments with matching bulk ATAC-seq or scRNA-seq in order to assess the accuracy, bias, robustness, and scalability of each statistical method. The structure of our experiments also provides the opportunity to define best practices for the analysis of scATAC-seq data beyond DA itself. We leverage this understanding to develop an R package implementing these best practices.
引用
收藏
相关论文
共 50 条
  • [1] Best practices for single-cell analysis across modalities
    Heumos, Lukas
    Schaar, Anna C.
    Lance, Christopher
    Litinetskaya, Anastasia
    Drost, Felix
    Zappia, Luke
    Luecken, Malte
    Strobl, Daniel
    Henao, Juan
    Curion, Fabiola B.
    Schiller, Herbert
    Theis, Fabian
    NATURE REVIEWS GENETICS, 2023, 24 (08) : 550 - 572
  • [2] Best practices for single-cell analysis across modalities
    Lukas Heumos
    Anna C. Schaar
    Christopher Lance
    Anastasia Litinetskaya
    Felix Drost
    Luke Zappia
    Malte D. Lücken
    Daniel C. Strobl
    Juan Henao
    Fabiola Curion
    Herbert B. Schiller
    Fabian J. Theis
    Nature Reviews Genetics, 2023, 24 : 550 - 572
  • [3] EPIGENOMICS Parallel single-cell sequencing
    Koch, Linda
    NATURE REVIEWS GENETICS, 2016, 17 (03) : 125 - 125
  • [4] Recent advances in single-cell epigenomics
    Harada, Akihito
    Kimura, Hiroshi
    Ohkawa, Yasuyuki
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 71 : 116 - 122
  • [5] Current best practices in single-cell RNA-seq analysis: a tutorial
    Luecken, Malte D.
    Theis, Fabian J.
    MOLECULAR SYSTEMS BIOLOGY, 2019, 15 (06)
  • [6] Single-cell epigenomics: techniques and emerging applications
    Schwartzman, Omer
    Tanay, Amos
    NATURE REVIEWS GENETICS, 2015, 16 (12) : 716 - 726
  • [7] Single-cell epigenomics: techniques and emerging applications
    Omer Schwartzman
    Amos Tanay
    Nature Reviews Genetics, 2015, 16 : 716 - 726
  • [8] Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics
    Grones, Carolin
    Eekhout, Thomas
    Shi, Dongbo
    Neumann, Manuel
    Berg, Lea S.
    Ke, Yuji
    Shahan, Rachel
    Cox, Kevin L.
    Gomez-Cano, Fabio
    Nelissen, Hilde
    Lohmann, Jan U.
    Giacomello, Stefania
    Martin, Olivier C.
    Cole, Benjamin
    Wang, Jia-Wei
    Kaufmann, Kerstin
    Raissig, Michael T.
    Palfalvi, Gergo
    Greb, Thomas
    Libault, Marc
    De Rybel, Bert
    PLANT CELL, 2024, : 812 - 828
  • [9] Destin: toolkit for single-cell analysis of chromatin accessibility
    Urrutia, Eugene
    Chen, Li
    Zhou, Haibo
    Jiang, Yuchao
    BIOINFORMATICS, 2019, 35 (19) : 3818 - 3820
  • [10] scaDA: A novel statistical method for differential analysis of single-cell chromatin accessibility sequencing data
    Zhao, Fengdi
    Ma, Xin
    Yao, Bing
    Lu, Qing
    Chen, Li
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (08)