The effect of time delay on the dynamics of a fractional-order epidemic model

被引:0
|
作者
Wu, Wanqin [1 ,2 ]
Zhou, Jianwen [1 ]
Li, Zhixiang [2 ]
Tan, Xuewen [2 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Minzu Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Time-delay; Fractional; Saturated incidence rates; Global dynamics; Bifurcation theory; STABILITY;
D O I
10.1186/s13662-025-03868-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study establishes a novel time-delay fractional SEIHR infectious disease model to investigate the effects of saturated incidence rates and time delays on different populations, including susceptibles, infected individuals, recovered individuals, and latent infected individuals. First, the existence and boundedness of the model's solutions are verified, confirming its well-posedness. Subsequently, the existence of equilibria is analyzed, and the impact of parameter variations on the system is explored by examining the equilibria & varepsilon;0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{0} $\end{document} and & varepsilon;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{*} $\end{document}, as well as the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0} $\end{document}. Additionally, the global dynamics of the equilibria are further analyzed using the Lyapunov method, while Hopf bifurcation theory is applied to explore the conditions under which the system shifts from stability to oscillatory behavior. Numerical simulations further validate the theoretical analysis, showing that time-delay effects significantly influence the system's responsiveness and the rate of disease transmission. Moreover, when the time delay tau crosses the critical threshold tau 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau _{0} $\end{document}, the system exhibits periodic oscillations. By predicting periodic fluctuations and incorporating memory effects and persistent influences, we can better control epidemics, emphasizing the importance of time-delay adjustments and enhancing the system's biological realism.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain
    Boukal, Y.
    Darouach, M.
    Zasadzinski, M.
    Radhy, N. E.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [42] Study of a Fractional-Order Epidemic Model of Childhood Diseases
    Ullah, Aman
    Abdeljawad, Thabet
    Ahmad, Shabir
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [43] Solutions of Conformable Fractional-Order SIR Epidemic Model
    Harir, Atimad
    Malliani, Said
    Chandli, Lalla Saadia
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 2021
  • [44] Dynamics and numerical approximations for a fractional-order SIS epidemic model with saturating contact rate
    Hoang, Manh Tuan
    Zafar, Zain Ul Abadin
    Ngo, Thi Kim Quy
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [45] Dynamics and numerical approximations for a fractional-order SIS epidemic model with saturating contact rate
    Manh Tuan Hoang
    Zain Ul Abadin Zafar
    Thi Kim Quy Ngo
    Computational and Applied Mathematics, 2020, 39
  • [46] Complex Dynamics and Fractional-Order Optimal Control of an Epidemic Model with Saturated Treatment and Incidence
    Majee, Suvankar
    Kar, T. K.
    Jana, Soovoojeet
    Das, Dhiraj Kumar
    Nieto, J. J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16):
  • [47] A fractional-order model with time delay for tuberculosis with endogenous reactivation and exogenous reinfections
    Chinnathambi, Rajivganthi
    Rihan, Fathalla A.
    Alsakaji, Hebatallah J.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8011 - 8025
  • [48] Fractional-Order Dynamics in Epidemic Disease Modeling with Advanced Perspectives of Fractional Calculus
    Riaz, Muhammad
    Khan, Zareen A.
    Ahmad, Sadique
    Ateya, Abdelhamied Ashraf
    FRACTAL AND FRACTIONAL, 2024, 8 (05)
  • [49] Synchronisation and Circuit Model of Fractional-Order Chaotic Systems with Time-Delay
    Atan, Ozkan
    IFAC PAPERSONLINE, 2016, 49 (29): : 68 - 72
  • [50] Robust stabilization of interval fractional-order plants with one time-delay by fractional-order controllers
    Gao, Zhe
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (02): : 767 - 786