The effect of time delay on the dynamics of a fractional-order epidemic model

被引:0
|
作者
Wu, Wanqin [1 ,2 ]
Zhou, Jianwen [1 ]
Li, Zhixiang [2 ]
Tan, Xuewen [2 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Minzu Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Time-delay; Fractional; Saturated incidence rates; Global dynamics; Bifurcation theory; STABILITY;
D O I
10.1186/s13662-025-03868-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study establishes a novel time-delay fractional SEIHR infectious disease model to investigate the effects of saturated incidence rates and time delays on different populations, including susceptibles, infected individuals, recovered individuals, and latent infected individuals. First, the existence and boundedness of the model's solutions are verified, confirming its well-posedness. Subsequently, the existence of equilibria is analyzed, and the impact of parameter variations on the system is explored by examining the equilibria & varepsilon;0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{0} $\end{document} and & varepsilon;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{*} $\end{document}, as well as the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0} $\end{document}. Additionally, the global dynamics of the equilibria are further analyzed using the Lyapunov method, while Hopf bifurcation theory is applied to explore the conditions under which the system shifts from stability to oscillatory behavior. Numerical simulations further validate the theoretical analysis, showing that time-delay effects significantly influence the system's responsiveness and the rate of disease transmission. Moreover, when the time delay tau crosses the critical threshold tau 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau _{0} $\end{document}, the system exhibits periodic oscillations. By predicting periodic fluctuations and incorporating memory effects and persistent influences, we can better control epidemics, emphasizing the importance of time-delay adjustments and enhancing the system's biological realism.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Dynamic analysis of a fractional-order SIRS model with time delay
    Zhou, Xueyong
    Wang, Mengya
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (02): : 368 - 384
  • [22] Fractional-order dynamics of Chagas-HIV epidemic model with different fractional operators
    Zarin, Rahat
    Khan, Amir
    Kumar, Pushpendra
    Humphries, Usa Wannasingha
    AIMS MATHEMATICS, 2022, 7 (10): : 18897 - 18924
  • [23] HIV/AIDS epidemic fractional-order model
    Zafar, Zain Ul Abadin
    Rehan, Kashif
    Mushtaq, M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) : 1298 - 1315
  • [24] Fractional-Order Epidemic Model for Measles Infection
    Akuka, Philip N. A.
    Seidu, Baba
    Okyere, Eric
    Abagna, Stephen
    SCIENTIFICA, 2024, 2024
  • [25] Fractional-Order Optimal Control of Fractional-Order Linear Vibration Systems with Time Delay
    Balochian, Saeed
    Rajaee, Nahid
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2018, 7 (03) : 72 - 93
  • [26] The Effect of Feedback Controls on Stability in a Fractional-Order SI Epidemic Model
    Rida S.Z.
    Farghaly A.A.
    Hussien F.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [27] Modeling the effect of vaccination in fractional-order epidemic model for infectious disease
    Mangal, Shiv
    Misra, O. P.
    Dhar, Joydip
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 303 - 317
  • [28] Modeling the effect of vaccination in fractional-order epidemic model for infectious disease
    Shiv Mangal
    O. P. Misra
    Joydip Dhar
    International Journal of Dynamics and Control, 2024, 12 : 303 - 317
  • [29] Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic
    Bahloul, Mohamed A.
    Chahid, Abderrazak
    Laleg-Kirati, Taous-Meriem
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2020, 1 : 249 - 256
  • [30] A fractional-order control model for diabetes with restraining and time-delay
    Ganesh Priya Balakrishnan
    Rajivganthi Chinnathambi
    Fathalla A. Rihan
    Journal of Applied Mathematics and Computing, 2023, 69 : 3403 - 3420