The effect of time delay on the dynamics of a fractional-order epidemic model

被引:0
|
作者
Wu, Wanqin [1 ,2 ]
Zhou, Jianwen [1 ]
Li, Zhixiang [2 ]
Tan, Xuewen [2 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Minzu Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Time-delay; Fractional; Saturated incidence rates; Global dynamics; Bifurcation theory; STABILITY;
D O I
10.1186/s13662-025-03868-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study establishes a novel time-delay fractional SEIHR infectious disease model to investigate the effects of saturated incidence rates and time delays on different populations, including susceptibles, infected individuals, recovered individuals, and latent infected individuals. First, the existence and boundedness of the model's solutions are verified, confirming its well-posedness. Subsequently, the existence of equilibria is analyzed, and the impact of parameter variations on the system is explored by examining the equilibria & varepsilon;0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{0} $\end{document} and & varepsilon;& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\epsilon _{*} $\end{document}, as well as the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0} $\end{document}. Additionally, the global dynamics of the equilibria are further analyzed using the Lyapunov method, while Hopf bifurcation theory is applied to explore the conditions under which the system shifts from stability to oscillatory behavior. Numerical simulations further validate the theoretical analysis, showing that time-delay effects significantly influence the system's responsiveness and the rate of disease transmission. Moreover, when the time delay tau crosses the critical threshold tau 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau _{0} $\end{document}, the system exhibits periodic oscillations. By predicting periodic fluctuations and incorporating memory effects and persistent influences, we can better control epidemics, emphasizing the importance of time-delay adjustments and enhancing the system's biological realism.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Dynamics and Event-Triggered Impulsive Control of a Fractional-Order Epidemic Model with Time Delay
    Liu, Na
    Wang, Jia
    Lan, Qixun
    Deng, Wei
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [2] Stability and Hopf Bifurcation Analysis of a Fractional-Order Epidemic Model with Time Delay
    Wang, Zhen
    Wang, Xinhe
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [3] A fractional-order epidemic model with time-delay and nonlinear incidence rate
    Rihan, F. A.
    Al-Mdallal, Q. M.
    AlSakaji, H. J.
    Hashish, A.
    CHAOS SOLITONS & FRACTALS, 2019, 126 (97-105) : 97 - 105
  • [4] Complex dynamics of a fractional-order epidemic model with saturated media effect
    Barman, Snehasis
    Jana, Soovoojeet
    Majee, Suvankar
    Das, Dhiraj Kumar
    Kar, Tapan Kumar
    NONLINEAR DYNAMICS, 2024, 112 (20) : 18611 - 18637
  • [5] Bifurcation Dynamics in a Fractional-Order Oregonator Model Including Time Delay
    Xu, Changjin
    Zhang, Wei
    Aouiti, Chaouki
    Liu, Zixin
    Li, Peiluan
    Yao, Lingyun
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 87 (02) : 397 - 414
  • [6] Propagation dynamics of fractional order delay epidemic model
    Chen G.
    Xiao M.
    Wan Y.-H.
    Wang X.-L.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2021, 38 (08): : 1257 - 1264
  • [7] Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay
    Kashkynbayev, Ardak
    Rihan, Fathalla A.
    MATHEMATICS, 2021, 9 (15)
  • [8] Global dynamics of a fractional-order SIR epidemic model with memory
    Naik, Parvaiz Ahmad
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (08)
  • [9] Epidemic Dynamics of a Fractional-Order SIS Infectious Network Model
    Liu, Na
    Li, Yunliu
    Sun, Junwei
    Fang, Jie
    Liu, Peng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [10] Finite-time dynamics of the fractional-order epidemic model: Stability, synchronization, and simulations
    Batiha, Iqbal M.
    Ogilat, Osama
    Bendib, Issam
    Ouannas, Adel
    Jebril, Iqbal H.
    Anakira, Nidal
    Chaos, Solitons and Fractals: X, 2024, 13