Self-healing actuatable electroluminescent fibres

被引:0
|
作者
Fu, Xuemei [1 ,2 ]
Wan, Guanxiang [1 ,2 ]
Guo, Hongchen [1 ,2 ]
Kim, Han-Joon [3 ]
Yang, Zijie [1 ,2 ]
Tan, Yu Jun [4 ]
Ho, John S. [2 ,3 ,5 ]
Tee, Benjamin C. K. [1 ,2 ,3 ,5 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore, Singapore
[2] Natl Univ Singapore, Inst Hlth Innovat & Technol, Singapore, Singapore
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[4] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
[5] Natl Univ Singapore, Inst Hlth N1, Singapore, Singapore
关键词
TEXTILES; DEVICES; SOFT;
D O I
10.1038/s41467-024-53955-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alternating-current electroluminescent fibres are promising candidates as light sources for smart textiles and soft machines. However, physical damage from daily use causes device deterioration or failure, making self-healable electroluminescent fibres attractive. In addition, soft robots could benefit from light-emitting combined with magnetically actuated functions. Here, we present a self-healing and actuatable Scalable Hydrogel-clad Ionotronic Nickel-core Electroluminescent (SHINE) fibre which achieves a record luminance of 1068 cd x m-2 at 5.7 V x mu m-1. The SHINE fibre can self-heal across all constituent layers after being severed, recovering 98.6% of pristine luminance and maintaining for over 10 months. SHINE fibre is also magnetically actuatable due to the ferromagnetic nickel electrode core, enabling a soft robotic fibre with omnidirectional actuation and electro-luminescence. Our approach to this multifunctional fibre broadens the design of fibre electronics and fibre robots, with applications in interactive displays and damage-resilient navigation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Self-Healing Hydrogels
    Taylor, Danielle Lynne
    Panhuis, Marc In Het
    ADVANCED MATERIALS, 2016, 28 (41) : 9060 - 9093
  • [42] Self-healing multitasking
    Bubnova, Olga
    NATURE NANOTECHNOLOGY, 2019, 14 (04) : 306 - 306
  • [43] Self-Healing materials
    Jayabalakrishnan, D.
    Muruga, D. B. Naga
    Bhaskar, K.
    Pavan, P.
    Balaji, K.
    Rajakumar, P. S.
    Priya, C.
    Deepa, R. A. B.
    Sendilvelan, S.
    Prabhahar, M.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 7195 - 7199
  • [44] Self-healing Computation
    Saad, George
    Saia, Jared
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, SSS 2014, 2014, 8756 : 195 - 210
  • [45] Self-Healing Materials
    Hager, Martin D.
    Greil, Peter
    Leyens, Christoph
    van der Zwaag, Sybrand
    Schubert, Ulrich S.
    ADVANCED MATERIALS, 2010, 22 (47) : 5424 - 5430
  • [46] A SELF-HEALING CONTROL
    BRILEY, BE
    BELL SYSTEM TECHNICAL JOURNAL, 1968, 47 (10): : 2367 - +
  • [47] Speedy self-healing
    不详
    NATURE MATERIALS, 2006, 5 (10) : 765 - 765
  • [48] Self-healing at the nanoscale
    Amendola, Vincenzo
    Meneghetti, Moreno
    CRYSTENGCOMM, 2009, 11 (12): : T95 - T95
  • [49] A Self-Healing Elastomer
    Wietor, Jean-Luc
    Sijbesma, Rint P.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (43) : 8161 - 8163
  • [50] THE MEDICINE OF SELF-HEALING
    OWEN, RMM
    LANCET, 1980, 2 (8196): : 698 - 698