Self-healing actuatable electroluminescent fibres

被引:0
|
作者
Fu, Xuemei [1 ,2 ]
Wan, Guanxiang [1 ,2 ]
Guo, Hongchen [1 ,2 ]
Kim, Han-Joon [3 ]
Yang, Zijie [1 ,2 ]
Tan, Yu Jun [4 ]
Ho, John S. [2 ,3 ,5 ]
Tee, Benjamin C. K. [1 ,2 ,3 ,5 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore, Singapore
[2] Natl Univ Singapore, Inst Hlth Innovat & Technol, Singapore, Singapore
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
[4] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
[5] Natl Univ Singapore, Inst Hlth N1, Singapore, Singapore
关键词
TEXTILES; DEVICES; SOFT;
D O I
10.1038/s41467-024-53955-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alternating-current electroluminescent fibres are promising candidates as light sources for smart textiles and soft machines. However, physical damage from daily use causes device deterioration or failure, making self-healable electroluminescent fibres attractive. In addition, soft robots could benefit from light-emitting combined with magnetically actuated functions. Here, we present a self-healing and actuatable Scalable Hydrogel-clad Ionotronic Nickel-core Electroluminescent (SHINE) fibre which achieves a record luminance of 1068 cd x m-2 at 5.7 V x mu m-1. The SHINE fibre can self-heal across all constituent layers after being severed, recovering 98.6% of pristine luminance and maintaining for over 10 months. SHINE fibre is also magnetically actuatable due to the ferromagnetic nickel electrode core, enabling a soft robotic fibre with omnidirectional actuation and electro-luminescence. Our approach to this multifunctional fibre broadens the design of fibre electronics and fibre robots, with applications in interactive displays and damage-resilient navigation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Self-Healing Polymers
    Novikov, Alexander S.
    POLYMERS, 2022, 14 (11)
  • [32] Self-healing superamphiphobicity
    Wang, Xiaolong
    Liu, Xinjie
    Zhou, Feng
    Liu, Weimin
    CHEMICAL COMMUNICATIONS, 2011, 47 (08) : 2324 - 2326
  • [33] Self-healing polymers
    Wang, Siyang
    Urban, Marek W.
    NATURE REVIEWS MATERIALS, 2020, 5 (08) : 562 - 583
  • [34] Self-Healing Concrete
    履之
    当代外语研究, 1994, (01) : 1 - 3
  • [35] Self-healing metallopolymers
    Bode, Stefan
    Hager, Martin D.
    Schubert, Ulrich S.
    Schacher, Felix H.
    Bose, Ranjita K.
    Garcia, Santiago J.
    van der Zwaag, Sybrand
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [36] The chemistry of self-healing
    Marek W. Urban
    Nature Chemistry, 2012, 4 : 80 - 82
  • [37] Biomimetic Self-Healing
    Diesendruck, Charles E.
    Sottos, Nancy R.
    Moore, Jeffrey S.
    White, Scott R.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (36) : 10428 - 10447
  • [38] Casparian self-healing
    Tena, Guillaume
    NATURE PLANTS, 2017, 3 (03)
  • [39] Self-healing circuits
    Connolly, Rachel
    MATERIALS WORLD, 2009, 17 (11) : 6 - 6
  • [40] Self-healing minefield
    Rolander, G
    Rogers, J
    Batteh, J
    BATTLESPACE DIGITIZATION AND NETWORK-CENTRIC SYSTEMS IV, 2004, 5441 : 13 - 24