A random forest mechanism to identify the initial conditions of external short circuits in 18650 lithium-ion batteries

被引:0
|
作者
Gotz, Joelton Deonei [1 ]
Galvao, Jose Rodolfo [2 ]
Viana, Emilson Ribeiro [3 ]
Borsato, Milton [4 ]
Correa, Fernanda Cristina [2 ]
Badin, Alceu Andre [1 ]
机构
[1] Univ Tecnol Fed Parana UTFPR, Grad Program Elect & Comp Engn, Curitiba, Parana, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Grad Program Elect Engn, Ponta Grossa, Parana, Brazil
[3] Univ Tecnol Fed Parana UTFPR, Postgrad Program Phys & Astron PPGFA CT, Curitiba, Parana, Brazil
[4] Univ Tecnol Fed Parana UTFPR, Postgrad Program Mech Engn & Mat PPGEM, Curitiba, Parana, Brazil
关键词
Lithium-ion battery; External short-circuit; Experiments; Degradation; Random forest; ELECTRIC VEHICLES; FAULT-DIAGNOSIS;
D O I
10.1007/s11581-025-06122-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion battery (LIB) is the mainstream energy storage technology (ESS) technology in this market, mainly because it has several advantages such as long lifetime, high density and capacity, and low self-discharging. Despite that, LIB is still sensitive to failures, and if it is not well managed, several types of abuse can be observed and cause performance and security issues. Therefore, it is essential to understand the main abuses, their causes, consequences, and how they happen to prevent them. Thus, this paper presents a contribution of two steps: firstly, it demonstrates the study of five applications of external short-circuit (ESC) experiments in 18650 LIB. Then, a random forest mechanism was applied to classify the conditions that determine the intensity of the consequences of the ESC. In the first part, the following experiments have been performed: (I) varying initial voltage (from 3.5 to 4.2 V), (II) changing the time between ESC with a relaxing time (2, 10, 20, 30, and 60 s), (III) varying capacity of the cell (20 mAh, 400 mAh, 940 mAh, 1202 mAh, and 1750 mA), (IV) varying external resistance (from 50 to 250 m Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with 50 m Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} step), and (V) varying the ambient temperature (30 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 40 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 50 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 60 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, and 70 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C). The results indicate that the ESC current curve comprises four stages. The temperature increases significantly during the high current flow in the cell. In addition, the external resistance, the time of the ESC, the ambient temperature, the cell's capacity, and the state of charge (SOC) play a vital role in the ESC's intensity and the ESC current's magnitude. The cell current is shown to be the main parameter used for ESC prevention mechanisms because it represents a similar behavior for almost every cause of ESC. Despite that, this work presents different magnitudes of the current curve depending on the causes and criticality of the ESC. Therefore, the information and expertise collected from the experiments can be used for machine learning prevention mechanisms to monitor battery abuses and failures in the first stage without the demand for new sensors and hardware, which is the second contribution of this work. It consists of applying a random forest mechanism to identify the causes/conditions of the ESC based on the main signals collected from the batteries. The results indicated that the proposed model can estimate the initial conditions of the ESC up to 0.99 of R2.
引用
收藏
页码:3323 / 3339
页数:17
相关论文
共 50 条
  • [31] On-Board State of Health Estimation for Lithium-ion Batteries Based on Random Forest
    Chen, Zheng
    Sun, Mengmeng
    Shu, Xing
    Shen, Jiangwei
    Xiao, Renxin
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 1754 - 1759
  • [32] Evaluation of Model for External Short Circuit Voltage Behavior Prediction of Lithium-ion Batteries
    Yan, Runbo
    Sun, Liqing
    Yang, Ruixin
    Xiong, Rui
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (02): : 199 - 211
  • [33] Experimental study on the internal short circuit and failure mechanism of lithium-ion batteries under mechanical abuse conditions
    An, Zhoujian
    Shi, Tianlu
    Du, Xiaoze
    An, Xian
    Zhang, Dong
    Bai, Jianhua
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [34] A Mechanical Aging Mechanism in Lithium-Ion Batteries
    Waldmann, T.
    Gorse, S.
    Samtleben, T.
    Schneider, G.
    Knoblauch, V.
    Wohlfahrt-Mehrens, M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) : A1742 - A1747
  • [35] Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries
    Jhu, C. -Y.
    Wang, Y. -W.
    Wen, C. -Y.
    Chiang, C. -C.
    Shu, C. -M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2011, 106 (01) : 159 - 163
  • [36] Direct measurement of internal temperatures of commercially-available 18650 lithium-ion batteries
    Casey M. Jones
    Meghana Sudarshan
    R. Edwin García
    Vikas Tomar
    Scientific Reports, 13
  • [37] The Development of Jelly Roll Deformation in 18650 Lithium-Ion Batteries at Low State of Charge
    Willenberg, Lisa
    Dechent, Philipp
    Fuchs, Georg
    Teuber, Moritz
    Eckert, Marcel
    Graff, Martin
    Kuerten, Niklas
    Sauer, Dirk Uwe
    Figgemeier, Egbert
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (12)
  • [38] Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle
    Yih-Shing Duh
    Meng-Ting Tsai
    Chen-Shan Kao
    Journal of Thermal Analysis and Calorimetry, 2017, 127 : 983 - 993
  • [39] Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries
    C.-Y. Jhu
    Y.-W. Wang
    C.-Y. Wen
    C.-C. Chiang
    C.-M. Shu
    Journal of Thermal Analysis and Calorimetry, 2011, 106 : 159 - 163
  • [40] Direct measurement of internal temperatures of commercially-available 18650 lithium-ion batteries
    Jones, Casey M.
    Sudarshan, Meghana
    Garcia, R. Edwin
    Tomar, Vikas
    SCIENTIFIC REPORTS, 2023, 13 (01)