A random forest mechanism to identify the initial conditions of external short circuits in 18650 lithium-ion batteries

被引:0
|
作者
Gotz, Joelton Deonei [1 ]
Galvao, Jose Rodolfo [2 ]
Viana, Emilson Ribeiro [3 ]
Borsato, Milton [4 ]
Correa, Fernanda Cristina [2 ]
Badin, Alceu Andre [1 ]
机构
[1] Univ Tecnol Fed Parana UTFPR, Grad Program Elect & Comp Engn, Curitiba, Parana, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Grad Program Elect Engn, Ponta Grossa, Parana, Brazil
[3] Univ Tecnol Fed Parana UTFPR, Postgrad Program Phys & Astron PPGFA CT, Curitiba, Parana, Brazil
[4] Univ Tecnol Fed Parana UTFPR, Postgrad Program Mech Engn & Mat PPGEM, Curitiba, Parana, Brazil
关键词
Lithium-ion battery; External short-circuit; Experiments; Degradation; Random forest; ELECTRIC VEHICLES; FAULT-DIAGNOSIS;
D O I
10.1007/s11581-025-06122-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion battery (LIB) is the mainstream energy storage technology (ESS) technology in this market, mainly because it has several advantages such as long lifetime, high density and capacity, and low self-discharging. Despite that, LIB is still sensitive to failures, and if it is not well managed, several types of abuse can be observed and cause performance and security issues. Therefore, it is essential to understand the main abuses, their causes, consequences, and how they happen to prevent them. Thus, this paper presents a contribution of two steps: firstly, it demonstrates the study of five applications of external short-circuit (ESC) experiments in 18650 LIB. Then, a random forest mechanism was applied to classify the conditions that determine the intensity of the consequences of the ESC. In the first part, the following experiments have been performed: (I) varying initial voltage (from 3.5 to 4.2 V), (II) changing the time between ESC with a relaxing time (2, 10, 20, 30, and 60 s), (III) varying capacity of the cell (20 mAh, 400 mAh, 940 mAh, 1202 mAh, and 1750 mA), (IV) varying external resistance (from 50 to 250 m Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with 50 m Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} step), and (V) varying the ambient temperature (30 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 40 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 50 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 60 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, and 70 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C). The results indicate that the ESC current curve comprises four stages. The temperature increases significantly during the high current flow in the cell. In addition, the external resistance, the time of the ESC, the ambient temperature, the cell's capacity, and the state of charge (SOC) play a vital role in the ESC's intensity and the ESC current's magnitude. The cell current is shown to be the main parameter used for ESC prevention mechanisms because it represents a similar behavior for almost every cause of ESC. Despite that, this work presents different magnitudes of the current curve depending on the causes and criticality of the ESC. Therefore, the information and expertise collected from the experiments can be used for machine learning prevention mechanisms to monitor battery abuses and failures in the first stage without the demand for new sensors and hardware, which is the second contribution of this work. It consists of applying a random forest mechanism to identify the causes/conditions of the ESC based on the main signals collected from the batteries. The results indicated that the proposed model can estimate the initial conditions of the ESC up to 0.99 of R2.
引用
收藏
页码:3323 / 3339
页数:17
相关论文
共 50 条
  • [21] Benign-to-malignant transition in external short circuiting of lithium-ion batteries
    Chen, Ze-Yu
    Xiong, Rui
    Zhang, Bo
    Yang, Rui-Xin
    Shen, Wei-Xiang
    Yang, Xiao-Guang
    Sun, Wan-Zhou
    Yu, Dai-Wei
    Sun, Feng-Chun
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (06):
  • [22] Thermal runaway characteristics of 18650 lithium-ion batteries in various states of charge
    Lai, Yen-Wen
    Chi, Kuang-Hui
    Chung, Yi-Hong
    Liao, Sheng-Wei
    Shu, Chi-Min
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (19) : 10477 - 10486
  • [23] State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries
    Xu, Jun
    Liu, Binghe
    Hu, Dayong
    SCIENTIFIC REPORTS, 2016, 6
  • [24] Research on overcharge mitigations and thermal runaway risk of 18650 lithium-ion batteries
    Yan, W. H.
    Huang, W. X.
    Yang, Y.
    Wei, Z. W.
    Zhen, H. S.
    Lin, Y.
    JOURNAL OF ENERGY STORAGE, 2025, 120
  • [25] State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries
    Jun Xu
    Binghe Liu
    Dayong Hu
    Scientific Reports, 6
  • [26] Thermal hazard evaluation of 18650 lithium-ion batteries at various discharge rates
    Lai, Yen -Wen
    Chi, Kuang-Hui
    Chung, Yi-Hong
    Liao, Sheng-Wei
    Shu, Chi -Min
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2024, 89
  • [27] Circuits monitor and balance large lithium-ion batteries
    Woods Hole Oceanographic Institution, Woods Hole, MA, United States
    EDN, 2007, 18 (84-86)
  • [28] Circuits monitor and balance large lithium-ion batteries
    Gomez-Ibanez, Daniel
    EDN, 2007, 52 (18) : 84 - +
  • [29] Insight into fast charging/discharging aging mechanism and degradation-safety analytics of 18650 lithium-ion batteries
    Guo, Yibo
    Cai, Jinle
    Liao, Yunlong
    Hu, Jiahua
    Zhou, Xiaomeng
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [30] Three-Dimensional Thermal Simulations of 18650 Lithium-Ion Batteries Cooled by Different Schemes under High Rate Discharging and External Shorting Conditions
    Li, Yang
    Zhou, Zhifu
    Zhao, Jian
    Hao, Liang
    Bai, Minli
    Li, Yulong
    Liu, Xuanyu
    Li, Yubai
    Song, Yongchen
    ENERGIES, 2021, 14 (21)