A random forest mechanism to identify the initial conditions of external short circuits in 18650 lithium-ion batteries

被引:0
|
作者
Gotz, Joelton Deonei [1 ]
Galvao, Jose Rodolfo [2 ]
Viana, Emilson Ribeiro [3 ]
Borsato, Milton [4 ]
Correa, Fernanda Cristina [2 ]
Badin, Alceu Andre [1 ]
机构
[1] Univ Tecnol Fed Parana UTFPR, Grad Program Elect & Comp Engn, Curitiba, Parana, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Grad Program Elect Engn, Ponta Grossa, Parana, Brazil
[3] Univ Tecnol Fed Parana UTFPR, Postgrad Program Phys & Astron PPGFA CT, Curitiba, Parana, Brazil
[4] Univ Tecnol Fed Parana UTFPR, Postgrad Program Mech Engn & Mat PPGEM, Curitiba, Parana, Brazil
关键词
Lithium-ion battery; External short-circuit; Experiments; Degradation; Random forest; ELECTRIC VEHICLES; FAULT-DIAGNOSIS;
D O I
10.1007/s11581-025-06122-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion battery (LIB) is the mainstream energy storage technology (ESS) technology in this market, mainly because it has several advantages such as long lifetime, high density and capacity, and low self-discharging. Despite that, LIB is still sensitive to failures, and if it is not well managed, several types of abuse can be observed and cause performance and security issues. Therefore, it is essential to understand the main abuses, their causes, consequences, and how they happen to prevent them. Thus, this paper presents a contribution of two steps: firstly, it demonstrates the study of five applications of external short-circuit (ESC) experiments in 18650 LIB. Then, a random forest mechanism was applied to classify the conditions that determine the intensity of the consequences of the ESC. In the first part, the following experiments have been performed: (I) varying initial voltage (from 3.5 to 4.2 V), (II) changing the time between ESC with a relaxing time (2, 10, 20, 30, and 60 s), (III) varying capacity of the cell (20 mAh, 400 mAh, 940 mAh, 1202 mAh, and 1750 mA), (IV) varying external resistance (from 50 to 250 m Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with 50 m Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} step), and (V) varying the ambient temperature (30 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 40 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 50 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, 60 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C, and 70 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document}C). The results indicate that the ESC current curve comprises four stages. The temperature increases significantly during the high current flow in the cell. In addition, the external resistance, the time of the ESC, the ambient temperature, the cell's capacity, and the state of charge (SOC) play a vital role in the ESC's intensity and the ESC current's magnitude. The cell current is shown to be the main parameter used for ESC prevention mechanisms because it represents a similar behavior for almost every cause of ESC. Despite that, this work presents different magnitudes of the current curve depending on the causes and criticality of the ESC. Therefore, the information and expertise collected from the experiments can be used for machine learning prevention mechanisms to monitor battery abuses and failures in the first stage without the demand for new sensors and hardware, which is the second contribution of this work. It consists of applying a random forest mechanism to identify the causes/conditions of the ESC based on the main signals collected from the batteries. The results indicated that the proposed model can estimate the initial conditions of the ESC up to 0.99 of R2.
引用
收藏
页码:3323 / 3339
页数:17
相关论文
共 50 条
  • [1] Study on the thermal runaway behavior and mechanism of 18650 lithium-ion battery induced by external short circuit
    Zeng, Zhixin
    An, Xian
    Peng, Changbo
    Ruan, Xianzhen
    Song, Zhiping
    Dang, Chao
    An, Zhoujian
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [2] A Novel Approach for Internal Short Circuit Prediction of Lithium-Ion Batteries by Random Forest
    Xiao, Bin
    Xiao, Bing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (04): : 1 - 19
  • [3] Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions
    Yang, Sheng
    Wang, Wenwei
    Lin, Cheng
    Shen, Weixiang
    Li, Yiding
    ENERGIES, 2019, 12 (10)
  • [4] Insight into Health Deterioration Induced by Multi-Cycle External Short Circuits in Commercial 18650 lithium-Ion Battery
    Hu, Jiahua
    Liao, Yunlong
    Cai, Jinle
    Wang, Ziyan
    Zhang, Wei
    Zhou, Xiaomeng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [5] Protection Devices in Commercial 18650 Lithium-Ion Batteries
    Xu, Bin
    Kong, Lingxi
    Wen, Guangrui
    Pecht, Michael G.
    IEEE ACCESS, 2021, 9 : 66687 - 66695
  • [6] External Short Circuit Fault Diagnosis for Lithium-Ion Batteries
    Xia, Bing
    Chen, Zheng
    Mi, Chris
    Robert, Brian
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2014,
  • [7] External Short Circuit Fault Diagnosis for Lithium-Ion Batteries
    Xia, Bing
    Chen, Zheng
    Mi, Chris
    Robert, Brian
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2014,
  • [8] Experimental investigation of the failure mechanism of 18650 lithium-ion batteries due to shock and drop
    Spielbauer, Markus
    Berg, Philipp
    Soellner, Jonas
    Peters, Julia
    Schaeufl, Florian
    Rosenmuller, Christian
    Bohlen, Oliver
    Jossen, Andreas
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [9] Thermal Runaway Characteristics of 18650 NCM Lithium-ion Batteries under the Different Initial Pressures
    Liu, Quanyi
    Zhu, Qian
    Zhu, Wentian
    Yi, Xiaoying
    Han, Xu
    ELECTROCHEMISTRY, 2022, 90 (08)
  • [10] Safety issues caused by internal short circuits in lithium-ion batteries
    Liu, Binghe
    Jia, Yikai
    Li, Juan
    Yin, Sha
    Yuan, Chunhao
    Hu, Zihan
    Wang, Lubing
    Li, Yangxing
    Xu, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (43) : 21475 - 21484