Generation of anomalously scattered lump waves for (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation

被引:0
|
作者
Qiu, Tianwei [1 ]
Wang, Zhen [1 ]
Yang, Xiangyu [2 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[2] Zhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2025年 / 140卷 / 02期
基金
中国国家自然科学基金;
关键词
RATIONAL SOLUTIONS; SOLITONS; POLYNOMIALS; HIERARCHY; PAIR;
D O I
10.1140/epjp/s13360-025-06047-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The anomalous scattering of lump waves governed by the Date-Jimbo-Kashiwara-Miwa (DJKM) equation is explored via two distinct methods. The second-order anomalously scattered lump is derived by degenerating the M-lump solution under the limit of infinite phase. Higher order anomalously scattered lumps are obtained through the degeneration of lump chains described by infinite periods, with analyses of two types of degenerate lump chains. A thorough asymptotic analysis is employed to investigate both the dynamic behavior and scattering angles of the anomalous scattering phnomena. Notably, the triangular structures of higher order lumps are found to be closely related to the Yablonskii-Vorob'ev polynomials. These insights may deepen our understanding of the intrinsic characteristics of lump waves.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A New (3+1) Date-Jimbo-Kashiwara-Miwa Equation: Solutions and Conservation Laws
    Goitsemang, T.
    Muatjetjeja, B.
    Mothibi, D. M.
    Motsumi, T. G.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (02) : 353 - 361
  • [32] Analytical solutions and molecule states of the (3+1)-dimensional variable coecient Date-Jimbo-Kashiwara-Miwa equation
    Ma, Hongcai
    Su, Nan
    Deng, Aiping
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [33] A (2+1)-dimensional variable-coefficients extension of the Date-Jimbo-Kashiwara-Miwa equation: Lie symmetry analysis, optimal system and exact solutions
    Hu, Yuru
    Zhang, Feng
    Xin, Xiangpeng
    Liu, Hanze
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (05) : 2011 - 2021
  • [34] Lie symmetries, exact solutions and conservation laws of the Date-Jimbo-Kashiwara-Miwa equation
    Tanwar, Dig Vijay
    Kumar, Mukesh
    NONLINEAR DYNAMICS, 2021, 106 (04) : 3453 - 3468
  • [35] Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation
    Wang, Dong
    Gao, Yi-Tian
    Yu, Xin
    Li, Liu-Qing
    Jia, Ting-Ting
    NONLINEAR DYNAMICS, 2021, 104 (02) : 1519 - 1531
  • [36] Optical Solutions of the Date-Jimbo-Kashiwara-Miwa Equation via the Extended Direct Algebraic Method
    Akram, Ghazala
    Sajid, Naila
    Abbas, Muhammad
    Hamed, Y. S.
    M. Abualnaja, Khadijah
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [37] Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation
    Dong Wang
    Yi-Tian Gao
    Xin Yu
    Liu-Qing Li
    Ting-Ting Jia
    Nonlinear Dynamics, 2021, 104 : 1519 - 1531
  • [38] Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation
    Kumar, Ajay
    Ilhan, Esin
    Ciancio, Armando
    Yel, Gulnur
    Baskonus, Haci Mehmet
    AIMS MATHEMATICS, 2021, 6 (05): : 4238 - 4264
  • [39] New non-traveling wave solutions for (3+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation
    Xu, Yuanqing
    Zheng, Xiaoxiao
    Xin, Jie
    AIMS MATHEMATICS, 2021, 6 (03): : 2996 - 3008
  • [40] Some Latest Families of Exact Solutions to Date-Jimbo-Kashiwara-Miwa Equation and Its Stability Analysis
    Akbulut, Arzu
    Alqahtani, Rubayyi T.
    Alharthi, Nadiyah Hussain
    MATHEMATICS, 2023, 11 (19)