New non-traveling wave solutions for (3+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation

被引:4
|
作者
Xu, Yuanqing [1 ]
Zheng, Xiaoxiao [1 ]
Xin, Jie [1 ,2 ,3 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Ludong Univ, Sch Math & Stat, Yantai 264025, Shandong, Peoples R China
[3] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
基金
中国国家自然科学基金;
关键词
extended homoclinic test approach; variable separation method; VC-DJKM equation; exact solutions; KADOMTSEV-PETVIASHVILI; DJKM EQUATION; LAX PAIR;
D O I
10.3934/math.2021182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate non-traveling wave solutions of the (3+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa (VC-DJKM) equation, which describes the real physical phenomena owing to the inhomogeneities of media. By combining the extended homoclinic test approach with variable separation method, we obtain abundant new exact non-traveling wave solutions of the (3+1)-dimensional VC-DJKM equation. These results with a parabolic tail or linear tail reveal the complex structure of the solutions for (3+1)-dimensional VC-DJKM equation. Moreover, the tail in these solutions maybe give a prediction of physical phenomenon. When arbitrary functions contained in these non-traveling wave solutions are taken as some special functions, we can get the kink-type solitons, singular solitary wave solutions, and periodic solitary wave solutions, and so on. As the special cases of our work, the corresponding results of (3+1)-dimensional DJKM equation, (2+1)-dimensional DJKM equation, (2+1)-dimensional VC-DJKM equation are also given.
引用
收藏
页码:2996 / 3008
页数:13
相关论文
共 50 条
  • [1] New non-traveling wave solutions for the (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation
    Xu, Yuanqing
    Zheng, Xiaoxiao
    Xin, Jie
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [2] A New (3+1) Date-Jimbo-Kashiwara-Miwa Equation: Solutions and Conservation Laws
    Goitsemang, T.
    Muatjetjeja, B.
    Mothibi, D. M.
    Motsumi, T. G.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2023, 12 (02) : 353 - 361
  • [3] Analytical solutions and molecule states of the (3+1)-dimensional variable coecient Date-Jimbo-Kashiwara-Miwa equation
    Ma, Hongcai
    Su, Nan
    Deng, Aiping
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [4] Lie symmetry analysis and invariant solutions of (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation
    Hu, Hengchun
    Sun, Runlan
    MODERN PHYSICS LETTERS B, 2022, 36 (05):
  • [5] BIFURCATION AND EXACT TRAVELING WAVE SOLUTIONS OF FRACTIONAL DATE-JIMBO-KASHIWARA-MIWA EQUATION
    Xu, Hui
    Liu, Minyuan
    Wang, Zenggui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [6] Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation
    Wang, Dong
    Gao, Yi-Tian
    Yu, Xin
    Li, Liu-Qing
    Jia, Ting-Ting
    NONLINEAR DYNAMICS, 2021, 104 (02) : 1519 - 1531
  • [7] Complexiton solutions and soliton solutions: -dimensional Date-Jimbo-Kashiwara-Miwa equation
    Adem, Abdullahi Rashid
    Yildirim, Yakup
    Yasar, Emrullah
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (03):
  • [8] Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation
    Dong Wang
    Yi-Tian Gao
    Xin Yu
    Liu-Qing Li
    Ting-Ting Jia
    Nonlinear Dynamics, 2021, 104 : 1519 - 1531
  • [9] A Study on Resonant Multisoliton Solution for the (2+1)-Dimensional Date-Jimbo-Kashiwara-Miwa Equation With Variable Coefficients
    Yang, Deniu
    Chen, Gang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [10] Multi-solitons and integrability for a (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation
    Zhao, Xue-Hui
    APPLIED MATHEMATICS LETTERS, 2024, 149