Lifting Theorem for the Virtual Pure Braid Groups

被引:0
|
作者
Bardakov, Valeriy G. [1 ,2 ,3 ]
Wu, Jie [4 ,5 ]
机构
[1] Sobolev Inst Math, 4 Acad,Koptyug Ave, Novosibirsk 630090, Russia
[2] Tomsk State Univ, Pr Lenina 36, Tomsk 634050, Russia
[3] Novosibirsk State Agrarian Univ, Dobrolyubova St 160, Novosibirsk 630039, Russia
[4] Hebei Normal Univ, Ctr Topol & Geometry Based Technol, Sch Math Sci, Shijiazhuang 050024, Peoples R China
[5] Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
关键词
Virtual braid group; Pure braid group; Simplicial group; Virtual cabling;
D O I
10.1007/s11401-025-0005-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article the authors prove theorem on Lifting for the set of virtual pure braid groups. This theorem says that if they know presentation of virtual pure braid group V P-4, then they can find presentation of V P(n )for arbitrary n > 4. Using this theorem they find the set of generators and defining relations for simplicial group T-* which was defined in [Bardakov, V. G. and Wu, J., On virtual cabling and structure of 4-strand virtual pure braid group, J. Knot Theory and Ram., 29(10), 2020, 1-32]. They find a decomposition of the Artin pure braid group P-n in semi-direct product of free groups in the cabled generators.
引用
收藏
页码:85 / 114
页数:30
相关论文
共 50 条
  • [1] Lifting Theorem for the Virtual Pure Braid Groups
    Valeriy GBARDAKOV
    Jie WU
    Chinese Annals of Mathematics,Series B, 2025, (01) : 85 - 114
  • [2] Automorphisms of pure braid groups
    Bardakov, Valeriy G.
    Neshchadim, Mikhail, V
    Singh, Mahender
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (01): : 1 - 19
  • [3] Presentation of pure braid groups
    Digne, F
    Gomi, Y
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (04) : 609 - 623
  • [4] Automorphisms of pure braid groups
    Valeriy G. Bardakov
    Mikhail V. Neshchadim
    Mahender Singh
    Monatshefte für Mathematik, 2018, 187 : 1 - 19
  • [5] The BNS invariants of the braid groups and pure braid groups of some surfaces
    de Miranda e Pereiro, Carolina
    Sgobbi, Wagner Carvalho
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1688 - 1712
  • [6] Virtual braid groups, virtual twin groups and crystallographic groups
    Junior, Paulo Cesar Cerqueira Dos Santos
    Ocampo, Oscar
    JOURNAL OF ALGEBRA, 2023, 632 : 567 - 601
  • [7] From pure braid groups to hyperbolic groups
    Chen, Lei
    ENSEIGNEMENT MATHEMATIQUE, 2025, 71 (1-2): : 71 - 85
  • [8] Automorphism groups of some pure braid groups
    Cohen, Daniel C.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (16) : 3404 - 3416
  • [9] A stability-like theorem for cohomology of pure braid groups of the series A, B and D
    Settepanella, S
    TOPOLOGY AND ITS APPLICATIONS, 2004, 139 (1-3) : 37 - 47
  • [10] The pure virtual braid group is quadratic
    Peter Lee
    Selecta Mathematica, 2013, 19 : 461 - 508