Virtual braid groups, virtual twin groups and crystallographic groups

被引:4
|
作者
Junior, Paulo Cesar Cerqueira Dos Santos [1 ]
Ocampo, Oscar [1 ]
机构
[1] Univ Fed Bahia, Dept Matemat Inst Matemat & Estat, BR-40170110 Salvador, BA, Brazil
关键词
Virtual braid group; Virtual twin group; Crystallographic group; FLAT MANIFOLDS;
D O I
10.1016/j.jalgebra.2023.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n & GE; 2. Let VBn (resp. VPn) be the virtual braid group (resp. the pure virtual braid group), and let VTn (resp. PVTn) be the virtual twin group (resp. the pure virtual twin group). Let & pi; be one of the following quotients: V Bn/& UGamma;2(V Pn) or VTn/& UGamma;2(PVTn) where & UGamma;2(H) is the commutator subgroup of H. In this paper, we show that & pi; is a crystallographic group and we characterize the elements of finite order and the conjugacy classes of elements in & pi;. Furthermore, we realize explicitly some Bieberbach groups and infinite virtually cyclic groups in & pi;. Finally, we also study other braid-like groups (welded, unrestricted, flat virtual, flat welded and Gauss virtual braid group) modulo the respective commutator subgroup in each case.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:567 / 601
页数:35
相关论文
共 50 条
  • [1] Unrestricted virtual braids and crystallographic braid groups
    Bellingeri, Paolo
    Guaschi, John
    Makri, Stavroula
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [2] Unrestricted virtual braids and crystallographic braid groups
    Paolo Bellingeri
    John Guaschi
    Stavroula Makri
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [3] Virtual planar braid groups and permutations
    Naik, Tushar Kanta
    Nanda, Neha
    Singh, Mahender
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 443 - 483
  • [4] DYNNIKOV COORDINATES ON VIRTUAL BRAID GROUPS
    Bardakov, Valeriy G.
    Vesnin, Andrei Yu.
    Wiest, Bert
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (05)
  • [5] Virtual and universal braid groups, their quotients and representations
    Bardakov, Valeriy
    Emel'yanenkov, Ivan
    Ivanov, Maxim
    Kozlovskaya, Tatyana
    Nasybullov, Timur
    Vesnin, Andrei
    JOURNAL OF GROUP THEORY, 2022, 25 (04) : 679 - 712
  • [6] Groups of two-braid virtual knots
    Kanenobu, Taizo
    Tsuji, Kazunori
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (06) : 671 - 697
  • [7] Lifting Theorem for the Virtual Pure Braid Groups
    Bardakov, Valeriy G.
    Wu, Jie
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 85 - 114
  • [8] Commutator subgroups of virtual and welded braid groups
    Bardakov, Valeriy G.
    Gongopadhyay, Krishnendu
    Neshchadim, Mikhail, V
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (03) : 507 - 533
  • [9] The unrestricted virtual braid groups UV Bn
    Makri, Stavroula
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (12)
  • [10] Lifting Theorem for the Virtual Pure Braid Groups
    Valeriy GBARDAKOV
    Jie WU
    Chinese Annals of Mathematics,Series B, 2025, (01) : 85 - 114