We compute the Bieri-Neumann-Strebel invariants Sigma(1)for the full and pure braid groups of the sphere S-2, the real projective plane RP2, the torus T and the Klein bottle K. For M = T or M=K, n >= 2, we show that the action by homeomorphisms of Out(P-n(M)) on S(P-n(M)) contains certain permutations, under which Sigma(1)(P-n(M))(c) is invariant. Furthermore, Sigma(1)(P-n(T))c, and Sigma(1)(P-n(S-2))(c) (with n >= 5) are finite unions of circles, and Sigma(1)(P-n(K))(c) is finite. This implies the existence of H(sic)Aut(P-n(K)) with |Aut(P-n(K)):H|<infinity such that R(phi)=infinity for every phi is an element of H.
机构:
Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, Russia
Chelyabinsk State Univ, Lab Quantum Topol, Bratev Kashirinykh St 129, Chelyabinsk 454001, Russia
Novosibirsk State Agrarian Univ, Dobrolyubova St 160, Novosibirsk 630039, RussiaNovosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, Russia
Bardakov, Valeriy G.
Neshchadim, Mikhail, V
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, RussiaNovosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, Russia
Neshchadim, Mikhail, V
Singh, Mahender
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Sci Educ & Res IISER Mohali, Dept Math Sci, Sect 81,PO Manauli, Sas Nagar 140306, Punjab, IndiaNovosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, Russia