The BNS invariants of the braid groups and pure braid groups of some surfaces

被引:0
|
作者
de Miranda e Pereiro, Carolina [1 ]
Sgobbi, Wagner Carvalho [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Matemat, UFES, BR-29075910 Vitoria, ES, Brazil
基金
巴西圣保罗研究基金会;
关键词
BNS invariants; braid groups; R-infinity property; VALUATIONS; PROPERTY; SERIES; MAPS;
D O I
10.1080/00927872.2024.2420763
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Bieri-Neumann-Strebel invariants Sigma(1)for the full and pure braid groups of the sphere S-2, the real projective plane RP2, the torus T and the Klein bottle K. For M = T or M=K, n >= 2, we show that the action by homeomorphisms of Out(P-n(M)) on S(P-n(M)) contains certain permutations, under which Sigma(1)(P-n(M))(c) is invariant. Furthermore, Sigma(1)(P-n(T))c, and Sigma(1)(P-n(S-2))(c) (with n >= 5) are finite unions of circles, and Sigma(1)(P-n(K))(c) is finite. This implies the existence of H(sic)Aut(P-n(K)) with |Aut(P-n(K)):H|<infinity such that R(phi)=infinity for every phi is an element of H.
引用
收藏
页码:1688 / 1712
页数:25
相关论文
共 50 条