A deep learning-based compression and classification technique for whole slide histopathology images

被引:0
|
作者
Barsi A. [1 ]
Nayak S.C. [2 ,4 ]
Parida S. [2 ,4 ]
Shukla R.M. [1 ]
机构
[1] Computing and Information Science, Anglia Ruskin University, Cambridge
[2] Engineering, Silicon University, Bhubaneswar
[3] Engineering, SoA University, Bhubaneswar
关键词
Compression; Deep learning; Image classification; Whole slide histopathology images;
D O I
10.1007/s41870-024-01945-4
中图分类号
学科分类号
摘要
This paper presents an autoencoder-based neural network architecture to compress histopathological images while retaining the denser and more meaningful representation of the original images. Current research into improving compression algorithms is focused on methods allowing lower compression rates for Regions of Interest (ROI-based approaches). Neural networks are great at extracting meaningful semantic representations from images and, therefore can select the regions to be considered of interest for the compression process. In this work, we focus on the compression of whole slide histopathology images. The objective is to build an ensemble of neural networks that enables a compressive autoencoder in a supervised fashion to retain a denser and more meaningful representation of the input histology images. Our proposed system is a simple and novel method to supervise compressive neural networks. We test the compressed images using transfer learning-based classifiers and show that they provide promising accuracy and classification performance. © The Author(s) 2024.
引用
收藏
页码:4517 / 4526
页数:9
相关论文
共 50 条
  • [21] Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
    Charlotte Syrykh
    Arnaud Abreu
    Nadia Amara
    Aurore Siegfried
    Véronique Maisongrosse
    François X. Frenois
    Laurent Martin
    Cédric Rossi
    Camille Laurent
    Pierre Brousset
    npj Digital Medicine, 3
  • [22] Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
    Syrykh, Charlotte
    Abreu, Arnaud
    Amara, Nadia
    Siegfried, Aurore
    Maisongrosse, Veronique
    Frenois, Francois X.
    Martin, Laurent
    Rossi, Cedric
    Laurent, Camille
    Brousset, Pierre
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [23] Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
    Hyeongsub Kim
    Hongjoon Yoon
    Nishant Thakur
    Gyoyeon Hwang
    Eun Jung Lee
    Chulhong Kim
    Yosep Chong
    Scientific Reports, 11
  • [24] Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
    Kim, Hyeongsub
    Yoon, Hongjoon
    Thakur, Nishant
    Hwang, Gyoyeon
    Lee, Eun Jung
    Kim, Chulhong
    Chong, Yosep
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [25] Deep learning-based fully automated diagnosis of melanocytic lesions by using whole slide images
    Bao, Yongyang
    Zhang, Jiayi
    Zhao, Xingyu
    Zhou, Henghua
    Chen, Ying
    Jian, Junming
    Shi, Tianlei
    Gao, Xin
    JOURNAL OF DERMATOLOGICAL TREATMENT, 2022, 33 (05) : 2571 - 2577
  • [26] Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images
    Farahani, Hossein
    Boschman, Jeffrey
    Farnell, David
    Darbandsari, Amirali
    Zhang, Allen
    Ahmadvand, Pouya
    Jones, Steven J. M.
    Huntsman, David
    Kobel, Martin
    Gilks, C. Blake
    Singh, Naveena
    Bashashati, Ali
    MODERN PATHOLOGY, 2022, 35 (12) : 1983 - 1990
  • [27] Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks
    Gecer, Bads
    Aksoy, Selim
    Mercan, Ezgi
    Shapiro, Linda G.
    Weaver, Donald L.
    Elmore, Joann G.
    PATTERN RECOGNITION, 2018, 84 : 345 - 356
  • [28] Learning how to detect: A deep reinforcement learning method for whole-slide melanoma histopathology images
    Zheng, Tingting
    Chen, Weixing
    Li, Shuqin
    Quan, Hao
    Zou, Mingchen
    Zheng, Song
    Zhao, Yue
    Gao, Xinghua
    Cui, Xiaoyu
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 108
  • [29] Artifact Augmentation for Learning-based Quality Control of Whole Slide Images
    Jurgas, Artur
    Wodzinski, Marek
    Celniak, Weronika
    Atzori, Manfredo
    Muller, Henning
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [30] Classification of adenoid cystic carcinoma in whole slide images by using deep learning
    Fu, Yan
    Zhou, Fanlin
    Shi, Xu
    Wang, Long
    Li, Yu
    Wu, Jian
    Huang, Hong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84