Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning

被引:50
|
作者
Syrykh, Charlotte [1 ]
Abreu, Arnaud [1 ,2 ,3 ]
Amara, Nadia [1 ]
Siegfried, Aurore [1 ]
Maisongrosse, Veronique [1 ]
Frenois, Francois X. [1 ]
Martin, Laurent [4 ,5 ]
Rossi, Cedric [5 ,6 ]
Laurent, Camille [1 ,7 ,8 ,9 ]
Brousset, Pierre [1 ,7 ,8 ]
机构
[1] Univ Canc Inst Toulouse Oncopole, Dept Pathol, Toulouse, France
[2] Roche Inst, Boulogne, France
[3] Univ Strasbourg, CNRS, ICube, Strasbourg, France
[4] Dijon Univ Hosp, Dept Pathol, Dijon, France
[5] INSERM UMR 1231, Dijon, France
[6] Dijon Univ Hosp, Dept Haematol, Dijon, France
[7] Univ Toulouse III Paul Sabatier, INSERM UMR 1037, Natl Ctr Sci Res CNRS ERL 5294, Canc Res Ctr Toulouse CRCT, Toulouse, France
[8] Inst Carnot Lymphome CALYM, Lab Excellence TOUCAN, Toulouse, France
[9] Programme Hosp Univ Cancerol CAPTOR, Univ Hosp Oncol Programme, Toulouse, France
关键词
IMPACT; REVISION;
D O I
10.1038/s41746-020-0272-0
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Histopathological diagnosis of lymphomas represents a challenge requiring either expertise or centralised review, and greatly depends on the technical process of tissue sections. Hence, we developed an innovative deep-learning framework, empowered with a certainty estimation level, designed for haematoxylin and eosin-stained slides analysis, with special focus on follicular lymphoma (FL) diagnosis. Whole-slide images of lymph nodes affected by FL or follicular hyperplasia were used for training, validating, and finally testing Bayesian neural networks (BNN). These BNN provide a diagnostic prediction coupled with an effective certainty estimation, and generate accurate diagnosis with an area under the curve reaching 0.99. Through its uncertainty estimation, our network is also able to detect unfamiliar data such as other small B cell lymphomas or technically heterogeneous cases from external centres. We demonstrate that machine-learning techniques are sensitive to the pre-processing of histopathology slides and require appropriate training to build universal tools to aid diagnosis.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
    Charlotte Syrykh
    Arnaud Abreu
    Nadia Amara
    Aurore Siegfried
    Véronique Maisongrosse
    François X. Frenois
    Laurent Martin
    Cédric Rossi
    Camille Laurent
    Pierre Brousset
    [J]. npj Digital Medicine, 3
  • [2] Deep learning for automatic diagnosis of gastric dysplasia using whole-slide histopathology images in endoscopic specimens
    Shi, Zhongyue
    Zhu, Chuang
    Zhang, Yu
    Wang, Yakun
    Hou, Weihua
    Li, Xue
    Lu, Jun
    Guo, Xinmeng
    Xu, Feng
    Jiang, Xingran
    Wang, Ying
    Liu, Jun
    Jin, Mulan
    [J]. GASTRIC CANCER, 2022, 25 (04) : 751 - 760
  • [3] Deep learning for automatic diagnosis of gastric dysplasia using whole-slide histopathology images in endoscopic specimens
    Zhongyue Shi
    Chuang Zhu
    Yu Zhang
    Yakun Wang
    Weihua Hou
    Xue Li
    Jun Lu
    Xinmeng Guo
    Feng Xu
    Xingran Jiang
    Ying Wang
    Jun Liu
    Mulan Jin
    [J]. Gastric Cancer, 2022, 25 : 751 - 760
  • [4] Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
    Jang, Hyun-Jong
    Song, In-Hye
    Lee, Sung-Hak
    [J]. CANCERS, 2021, 13 (15)
  • [5] Diagnosis of Alzheimer Disease and Tauopathies on Whole-Slide Histopathology Images Using a Weakly Supervised Deep Learning Algorithm
    Kim, Minji
    Sekiya, Hiroaki
    Yao, Gary
    Martin, Nicholas B.
    Castanedes-Casey, Monica
    Dickson, Dennis W.
    Hwang, Tae Hyun
    Koga, Shunsuke
    [J]. LABORATORY INVESTIGATION, 2023, 103 (06)
  • [6] Deep Learning Assisted Diagnosis of Onychomycosis on Whole-Slide Images
    Jansen, Philipp
    Creosteanu, Adelaida
    Matyas, Viktor
    Dilling, Amrei
    Pina, Ana
    Saggini, Andrea
    Schimming, Tobias
    Landsberg, Jennifer
    Burgdorf, Birte
    Giaquinta, Sylvia
    Mueller, Hansgeorg
    Emberger, Michael
    Rose, Christian
    Schmitz, Lutz
    Geraud, Cyrill
    Schadendorf, Dirk
    Schaller, Joerg
    Alber, Maximilian
    Klauschen, Frederick
    Griewank, Klaus G.
    [J]. JOURNAL OF FUNGI, 2022, 8 (09)
  • [7] Deep learning-based accurate diagnosis and quantitative evaluation of microvascular invasion in hepatocellular carcinoma on whole-slide histopathology images
    Zhang, Xiuming
    Yu, Xiaotian
    Liang, Wenjie
    Zhang, Zhongliang
    Zhang, Shengxuming
    Xu, Linjie
    Zhang, Han
    Feng, Zunlei
    Song, Mingli
    Zhang, Jing
    Feng, Shi
    [J]. CANCER MEDICINE, 2024, 13 (05):
  • [8] Integration of Deep Learning and Graph Theory for Analyzing Histopathology Whole-slide Images
    Jung, Hyun
    Suloway, Christian
    Miao, Tianyi
    Edmondson, Elijah F.
    Morcock, David R.
    Deleage, Claire
    Liu, Yanling
    Collins, Jack R.
    Lisle, Curtis
    [J]. 2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [9] Survival outcome prediction of breast carcinomas on whole-slide histopathology images using deep learning
    Paul, Julian
    Bossard, Celine
    Rynkiewicz, Joseph
    Molinie, Florence
    Salhi, Sanae
    Frenel, Jean-Sebastien
    Salhi, Yahia
    Chetritt, Jerome
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [10] Efficient and Highly Accurate Diagnosis of Malignant Hematological Diseases Based on Whole-Slide Images Using Deep Learning
    Wang, Chong
    Wei, Xiu-Li
    Li, Chen-Xi
    Wang, Yang-Zhen
    Wu, Yang
    Niu, Yan-Xiang
    Zhang, Chen
    Yu, Yi
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12