Jacobi spectral collocation method of space-fractional Navier-Stokes equations

被引:0
|
作者
Jiao, Yujian [1 ]
Li, Tingting [1 ]
Zhang, Zhongqiang [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
关键词
Jacobi spectral collocation method; Space fractional Navier-Stokes equation; First-order implicit-explicit Euler time-stepping scheme; NUMERICAL-ANALYSIS; MODEL;
D O I
10.1016/j.amc.2024.129111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Jacobi spectral collocation method for two-dimensional space fractional Navier-Stokes equations with Laplacian and fractional Laplacian. We first derive modified fractional differentiation matrices to accommodate the singularity in two dimensions and verify the boundedness of its spectral radius. Next, we construct a fully discrete scheme for the space-fractional Navier-Stokes equations, combined with the first-order implicit-explicit Euler time-stepping scheme at the Jacobi-Gauss-Lobatto collocation points. Through some twodimensional numerical examples, we present the influence of different parameters in the equations on numerical errors. Various numerical examples verify the effectiveness of our method and suggest the smoothness of the solution for further regularity analysis.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A first step in applying the Sinc collocation method to the nonlinear Navier-Stokes equations
    Narasimhan, S
    Majdalani, J
    Stenger, F
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2002, 41 (05) : 447 - 462
  • [42] Energy methods for fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    Ahmad, Bashir
    Alsaedi, Ahmed
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 78 - 85
  • [43] Fractional Optimal Control of Navier-Stokes Equations
    Hyder, Abd-Allah
    El-Badawy, M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (02): : 859 - 870
  • [44] NAVIER-STOKES EQUATIONS, TURBULENCE, AND FRACTIONAL CALCULUS
    MORITZ, E
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 54 - 54
  • [45] On the time-fractional Navier-Stokes equations
    Zhou, Yong
    Peng, Li
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 874 - 891
  • [47] Fractional Navier-Stokes Equations With Delay Conditions
    Ben Tahir, Hachem
    Melliani, S.
    Elomari, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 15
  • [48] High Accuracy Spectral Method for the Space-Fractional Diffusion Equations
    Zhai, Shuying
    Gui, Dongwei
    Zhao, Jianping
    Feng, Xinlong
    JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (03): : 274 - 286
  • [49] APPLICATION OF A FRACTIONAL-STEP METHOD TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    KIM, J
    MOIN, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) : 308 - 323
  • [50] SPECTRAL MULTIGRID TECHNIQUES FOR THE NAVIER-STOKES EQUATIONS
    HEINRICHS, W
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 106 (03) : 297 - 314