Machine learning and deep learning prediction models for time-series: a comparative analytical study for the use case of the UK short-term electricity price prediction

被引:0
|
作者
Bhupesh Kumar Mishra [1 ]
Vjosa Preniqi [2 ]
Dhavalkumar Thakker [1 ]
Erich Feigl [3 ]
机构
[1] University of Hull,
[2] Queen Mary University,undefined
[3] Drax Retail,undefined
来源
关键词
Time-series; Internet of things; Machine learning; Deep learning; Electricity price-prediction; ARIMA; Prophet; XGBoost;
D O I
10.1007/s43926-024-00075-4
中图分类号
学科分类号
摘要
Electricity price prediction has an imperative role in the UK energy market among energy trading organisations. The price prediction directly impacts organisational policy for profitable electricity trading, better bidding plans, and the optimisation of energy storage devices for any surplus energy. Business organisations always look for the use of price-prediction models with higher accuracy to help them maximise benefits. With the enhancement of Internet of Things (IoT) technology, data availability on energy demand, and hence the associated price prediction modelling has become more effective tools than before. However, price prediction has been a challenging task because of the uncertainty in the demand and supply and other external factors such as weather, and gas prices as these factors can influence the fluctuation of electricity prices. In this regard, the selection of an appropriate prediction model is crucial for business organisations. In this paper, an analytical study has been presented to predict short-term electricity prices in the UK market as a use case for a UK-based energy trading company. ARIMA, Prophet, XGBoost as well as Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long-Short Term Memory (LSTM) algorithms have been analysed. In this study, UK Market Index Data (MID) from Elexon API data has been used that represent half-hourly electricity prices. In addition, gas prices, and initial demand out-turn data, as external factors, are introduced into the models for improving the accuracy and performance of these models. The comparative analysis shows that the ARIMA can handle only one external factor in its prediction model, while the Prophet and XGBoost can incorporate multiple external regressors in their models. Also, the models based on deep learning algorithms can deal with univariate and multivariate time series. The comparative analysis also revealed that the XGBoost model has better performance than the ARIMA and Prophet models, as has been found in earlier studies. With the extended analysis, it has been found that deep learning models outperform ARIMA, Prophet, and XGBoost models in terms of prediction accuracy. This extended comparative analysis gives the flexibility to choose the appropriate model selection for any organisation working in analogous business scenarios as of the business use case of this study.
引用
收藏
相关论文
共 50 条
  • [21] Deep learning for short-term traffic flow prediction
    Polson, Nicholas G.
    Sokolov, Vadim O.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 79 : 1 - 17
  • [22] Very Short-Term PV Power Prediction Using Machine Learning Models
    Javadi, Masoud
    Naderi, Soheil
    Liang, Xiaodong
    Gong, Yuzhong
    Chung, Chi Yung
    2022 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2022, : 55 - 59
  • [23] A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin
    Hussain, Dostdar
    Hussain, Tahir
    Khan, Aftab Ahmed
    Naqvi, Syed Ali Asad
    Jamil, Akhtar
    EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 915 - 927
  • [24] A deep learning approach for hydrological time-series prediction: A case study of Gilgit river basin
    Dostdar Hussain
    Tahir Hussain
    Aftab Ahmed Khan
    Syed Ali Asad Naqvi
    Akhtar Jamil
    Earth Science Informatics, 2020, 13 : 915 - 927
  • [25] Deep learning framework for stock price prediction using long short-term memory
    Chandar S.K.
    Soft Comput., 17-18 (10557-10567): : 10557 - 10567
  • [26] A Review of Deep Learning Models for Time Series Prediction
    Han, Zhongyang
    Zhao, Jun
    Leung, Henry
    Ma, King Fai
    Wang, Wei
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 7833 - 7848
  • [27] Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
    Barrera-Animas, Ari Yair
    Oyedele, Lukumon O.
    Bilal, Muhammad
    Akinosho, Taofeek Dolapo
    Delgado, Juan Manuel Davila
    Akanbi, Lukman Adewale
    MACHINE LEARNING WITH APPLICATIONS, 2022, 7
  • [28] Prediction of hydrological time-series using extreme learning machine
    Atiquzzaman, Md
    Kandasamy, Jaya
    JOURNAL OF HYDROINFORMATICS, 2016, 18 (02) : 345 - 353
  • [29] Comparitive Study of Time Series and Deep Learning Algorithms for Stock Price Prediction
    Sivapurapu, Santosh Ambaprasad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (06) : 460 - 470
  • [30] Deep learning methods for underground deformation time-series prediction
    Ma, E.
    Janiszewski, M.
    Torkan, M.
    PROCEEDINGS OF THE ITA-AITES WORLD TUNNEL CONGRESS 2023, WTC 2023: Expanding Underground-Knowledge and Passion to Make a Positive Impact on the World, 2023, : 2775 - 2781