Deep learning framework for stock price prediction using long short-term memory

被引:0
|
作者
Chandar S.K. [1 ]
机构
[1] School of Business and Management, CHRIST (Deemed to be University), Bangalore
来源
Soft Comput. | / 17-18卷 / 10557-10567期
关键词
Artificial intelligence; Deep learning neural network; Long short-term memory; Mean absolute percentage error; Stock prediction; Technical indicators;
D O I
10.1007/s00500-024-09836-3
中图分类号
学科分类号
摘要
Forecasting stock prices is always considered as complicated process due to the dynamic and noisy characteristics of stock data influenced by external factors. For predicting the stock market, several approaches have been put forward. Many academics have successfully forecasted stock prices using soft computing models. Recently, there has been growing interest in applying deep learning techniques in combination with technical indicators to forecast stock prices, attracting attention from both investors and researchers. This paper focuses on developing a reliable model for anticipating future stock prices in one day advance using Long Short-Term Memory (LSTM). Three steps make up the suggested model. The approach begins with ten technical indicators computed from previous data as feature vectors. The second phase involves data normalization to scale the feature vectors. Finally, in the third phase, the LSTM model analyzes the closing price for the next day using the normalized characteristics as input. Two stock markets, NASDAQ and NYSE are chosen to evaluate the efficacy of the developed model. To demonstrate how effective the new model is in making predictions, its performance is compared to earlier models. Comparing the suggested model to other models, the findings revealed that it had a high level of prediction accuracy. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
页码:10557 / 10567
页数:10
相关论文
共 50 条
  • [1] Evolutionary Framework with Bidirectional Long Short-Term Memory Network for Stock Price Prediction
    Zheng, Hongying
    Wang, Hongyu
    Chen, Jianyong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [2] A deep learning approach for stock market prediction using deep autoencoder and long short-term memory
    Rekha, K.S.
    Sabu, M.K.
    International Journal of Intelligent Systems Technologies and Applications, 2021, 20 (04) : 310 - 324
  • [3] Effectiveness of Deep Learning Long Short-Term Memory Network for Stock Price Prediction on Graphics Processing Unit
    Saheed, Yakub Kayode
    Raji, Mustafa Ayobami
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1665 - 1671
  • [4] Short Term Stock Price Prediction Using Deep Learning
    Khare, Kaustubh
    Darekar, Omkar
    Gupta, Prafull
    Attar, V. Z.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 482 - 486
  • [5] Stock Price Prediction Using Time Convolution Long Short-Term Memory Network
    Zhan, Xukuan
    Li, Yuhua
    Li, Ruixuan
    Gu, Xiwu
    Habimana, Olivier
    Wang, Haozhao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I, 2018, 11061 : 461 - 468
  • [6] Deep Learning Framework for Domain Generation Algorithms Prediction Using Long Short-term Memory
    Akarsh, S.
    Sriram, S.
    Poornachandran, Prabaharan
    Menon, Vijay Krishna
    Soman, K. P.
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 666 - 671
  • [7] Deep Learning for Price Movement Prediction Using Convolutional Neural Network and Long Short-Term Memory
    Yang, Can
    Zhai, Junjie
    Tao, Guihua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [8] Stock Market Prediction Using Long Short-Term Memory
    Ukrit, M. Ferni
    Saranya, A.
    Anurag, Rallabandi
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, 2020, 1056 : 205 - 212
  • [9] Stock price trend prediction with long short-term memory neural networks
    Department of Computer Science and Engineering, Chandigarh College of Engineering and Technology, Sector 26, Chandigarh
    160019, India
    Int. J. Comput. Intell. Stud., 2019, 4 (289-298): : 289 - 298
  • [10] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,