Kantorovich Variant of the Blending Type Bernstein Operators

被引:1
|
作者
Baytunc, Erdem [1 ]
Gezer, Halil [2 ]
Aktuglu, Huseyin [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Art & Sci, Dept Math, 10 Mersin, TR-99450 Famagusta, Turkiye
[2] Cyprus Int Univ, Fac Art & Sci, Dept Basic Sci & Humanities, 10 Mersin, TR-99010 Nicosia, Turkiye
关键词
Bernstein operators; Bernstein-Kantorovich operators; Polynomial approximation; Rate of convergence; Modulus of continuity; Shape-preserving properties; Uniform convergence; APPROXIMATION;
D O I
10.1007/s41980-024-00917-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a novel class of blending-type Bernstein-Kantorovich operators. These operators depend on three parameters: alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. We establish results on the uniform convergence and rate of convergence of these operators in terms of the first and second order modulus of continuity. We also investigate the shape-preserving properties of the operators, such as monotonicity and convexity, for each choice of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. Finally, we provide graphical and numerical results to illustrate the accuracy of the operators and to demonstrate how they approach certain functions.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] The Bezier variant of a new type λ-Bernstein operators
    Lian, Bo-yong
    Cai, Qing-bo
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 605 - 609
  • [42] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [43] Generalized Bernstein Kantorovich operators: Voronovskaya type results, convergence in variation
    Acu, Ana Maria
    Aral, Ali
    Rasa, Ioan
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (01) : 1 - 12
  • [44] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [45] Approximation properties of the new type generalized Bernstein-Kantorovich operators
    Kara, Mustafa
    AIMS MATHEMATICS, 2022, 7 (03): : 3826 - 3844
  • [46] APPROXIMATION PROPERTIES OF BERNSTEIN-KANTOROVICH TYPE OPERATORS OF TWO VARIABLES
    Karahan, Done
    Izgi, Aydin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 2313 - 2323
  • [47] APPROXIMATION PROPERTIES OF MODIFIED KANTOROVICH TYPE (p, q)-BERNSTEIN OPERATORS
    Yu, Kan
    Cheng, Wentao
    Fan, Ligang
    Zhou, Xiaoling
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 547 - 558
  • [48] Blending Type Approximation by GBS Operators of Generalized Bernstein–Durrmeyer Type
    Arun Kajla
    Dan Miclăuş
    Results in Mathematics, 2018, 73
  • [49] Approximation by Bernstein-Kantorovich type operators based on Beta function
    Aharouch, Lahsen
    Ansari, Khursheed J.
    FILOMAT, 2023, 37 (30) : 10445 - 10457
  • [50] On statistical approximation properties of Kantorovich type q-Bernstein operators
    Dalmanoglu, Oezge
    Dogru, Oguen
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 760 - 771