Kantorovich Variant of the Blending Type Bernstein Operators

被引:1
|
作者
Baytunc, Erdem [1 ]
Gezer, Halil [2 ]
Aktuglu, Huseyin [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Art & Sci, Dept Math, 10 Mersin, TR-99450 Famagusta, Turkiye
[2] Cyprus Int Univ, Fac Art & Sci, Dept Basic Sci & Humanities, 10 Mersin, TR-99010 Nicosia, Turkiye
关键词
Bernstein operators; Bernstein-Kantorovich operators; Polynomial approximation; Rate of convergence; Modulus of continuity; Shape-preserving properties; Uniform convergence; APPROXIMATION;
D O I
10.1007/s41980-024-00917-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a novel class of blending-type Bernstein-Kantorovich operators. These operators depend on three parameters: alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. We establish results on the uniform convergence and rate of convergence of these operators in terms of the first and second order modulus of continuity. We also investigate the shape-preserving properties of the operators, such as monotonicity and convexity, for each choice of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. Finally, we provide graphical and numerical results to illustrate the accuracy of the operators and to demonstrate how they approach certain functions.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Kantorovich variant of a new kind of q-Bernstein-Schurer operators
    Ruchi, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) : 5687 - 5706
  • [22] α-Bernstein-Kantorovich operators
    Deo, Naokant
    Pratap, Ram
    AFRIKA MATEMATIKA, 2020, 31 (3-4) : 609 - 618
  • [23] ψ-Bernstein-Kantorovich operators
    Aktuglu, Huseyin
    Kara, Mustafa
    Baytunc, Erdem
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1124 - 1141
  • [24] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [25] Convergence analysis of modified Bernstein-Kantorovich type operators
    Senapati, Abhishek
    Kumar, Ajay
    Som, Tanmoy
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3749 - 3764
  • [26] A Kantorovich variant of a new type Bernstein-Stancu polynomials
    Icoz, Gurhan
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8552 - 8560
  • [27] Kantorovich-type operators associated with a variant of Jain operators
    Agratini, Octavian
    Dogru, Ogun
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 279 - 288
  • [28] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2015
  • [29] Approximation by Kantorovich Type q-Bernstein-Stancu Operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 85 - 107
  • [30] Approximation by nonlinear Bernstein-Chlodowsky operators of Kantorovich type
    Acar, Ecem
    Guller, Ozge Ozalp
    Serenbay, Sevilay Kirci
    FILOMAT, 2023, 37 (14) : 4621 - 4627