Kantorovich Variant of the Blending Type Bernstein Operators

被引:1
|
作者
Baytunc, Erdem [1 ]
Gezer, Halil [2 ]
Aktuglu, Huseyin [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Art & Sci, Dept Math, 10 Mersin, TR-99450 Famagusta, Turkiye
[2] Cyprus Int Univ, Fac Art & Sci, Dept Basic Sci & Humanities, 10 Mersin, TR-99010 Nicosia, Turkiye
关键词
Bernstein operators; Bernstein-Kantorovich operators; Polynomial approximation; Rate of convergence; Modulus of continuity; Shape-preserving properties; Uniform convergence; APPROXIMATION;
D O I
10.1007/s41980-024-00917-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a novel class of blending-type Bernstein-Kantorovich operators. These operators depend on three parameters: alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. We establish results on the uniform convergence and rate of convergence of these operators in terms of the first and second order modulus of continuity. We also investigate the shape-preserving properties of the operators, such as monotonicity and convexity, for each choice of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and s. Finally, we provide graphical and numerical results to illustrate the accuracy of the operators and to demonstrate how they approach certain functions.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] GENERALIZED BERNSTEIN-KANTOROVICH OPERATORS OF BLENDING TYPE
    Kajla, Arun
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 491 - 502
  • [2] The Bezier variant of Kantorovich type λ-Bernstein operators
    Cai, Qing-Bo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [3] The Bézier variant of Kantorovich type λ-Bernstein operators
    Qing-Bo Cai
    Journal of Inequalities and Applications, 2018
  • [4] A Kantorovich variant of a generalized Bernstein operators
    Kajla, Arun
    Agarwal, Praveen
    Araci, Serkan
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (02): : 86 - 96
  • [5] Blending type approximation by GBS operators of bivariate tensor product of λ-Bernstein-Kantorovich type
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [6] A Note on Approximation of Blending Type Bernstein-Schurer-Kantorovich Operators with Shape Parameter α
    Ayman-Mursaleen, Mohammad
    Rao, Nadeem
    Rani, Mamta
    Kilicman, Adem
    Al-Abied, Ahmed Ahmed Hussin Ali
    Malik, Pradeep
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [7] Bezier variant of Bernstein-Durrmeyer blending-type operators
    Prakash, Chandra
    Deo, Naokant
    Verma, D. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [8] Rate of Weighted Statistical Convergence for Generalized Blending-Type Bernstein-Kantorovich Operators
    Ozger, Faruk
    Aljimi, Ekrem
    Ersoy, Merve Temizer
    MATHEMATICS, 2022, 10 (12)
  • [9] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [10] Sq-Bernstein-Kantorovich operators and their Bézier variant
    Saeidian, Jamshid
    Nouri, Bahareh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,