DPMFformer: an underwater image enhancement network based on deep pooling and multi-scale fusion transformer

被引:0
|
作者
Xiang, Dan [1 ,2 ]
Yang, Wenlei [2 ]
Zhou, Zebin [2 ]
Zhang, Jinwen [4 ]
Li, Jianxin [5 ]
Ouyang, Jian [3 ]
Ling, Jing [1 ]
机构
[1] Guangzhou Maritime Univ, Dept Informat & Commun Engn, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Elect & Informat, Guangzhou, Guangdong, Peoples R China
[3] Guangdong Polytech Normal Univ, Guangdong Ind Training Ctr, Guangzhou, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab Green Construct & Intellige, Guangzhou, Guangdong, Peoples R China
[5] Guangzhou Maritime Univ, Sch Intelligent Transportat & Engn, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater image enhancement; Transformer; Multi-scale fusion; Deep pooling; COLOR; CONTRAST;
D O I
10.1007/s12145-024-01573-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to light absorption and scattering, underwater images often suffer from color distortion, low contrast, and blurred details, seriously affects the effectiveness of advanced computer vision tasks. To address these degradation issues, this paper proposes an innovative underwater image enhancement algorithm, Deep Pooling and Multi-Scale Fusion Transformer (DPMFformer). The algorithm is composed of four key modules: the Dual-Balanced Multiscale Fusion Module (DBMF), the Deep Pooling Self-Attention Transformer (DPST), the Wavelet Sampling (WS), and the Global Spatial Feature Self-Attention Transformer (GSFAT). The DBMF module employs trainable color modules to simulate the grey-scale world theory, achieving inter-channel color balance. The DPST module enhances the network's ability to extract information from feature regions through a deep-pooling layer and spatial attention mechanism. The WS module utilizes Harr wavelet sampling instead of conventional up- and down-sampling, preserving low-frequency information while improving the up-sampling outcome. The GSFAT module combines Swin Transformer (SwinT) and Position Embedding Cascading Transformer (PCET), enhancing the extraction of global information through position embedding and a sliding window self-attention mechanism, thereby improving the attention on the degraded regions of the image. Experimental results show that the proposed DPMFfomer is superior to existing underwater image enhancement methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] TFNet: Transformer-Based Multi-Scale Feature Fusion Forest Fire Image Detection Network
    Liu, Hongying
    Zhang, Fuquan
    Xu, Yiqing
    Wang, Junling
    Lu, Hong
    Wei, Wei
    Zhu, Jun
    FIRE-SWITZERLAND, 2025, 8 (02):
  • [42] MFT: Multi-scale Fusion Transformer for Infrared and Visible Image Fusion
    Zhang, Chen-Ming
    Yuan, Chengbo
    Luo, Yong
    Zhou, Xin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 485 - 496
  • [43] Multi-Scale Feature Fusion Enhancement for Underwater Object Detection
    Xiao, Zhanhao
    Li, Zhenpeng
    Li, Huihui
    Li, Mengting
    Liu, Xiaoyong
    Kong, Yinying
    SENSORS, 2024, 24 (22)
  • [44] Multi-Scale Progressive Fusion Network for Low-Light Image Enhancement
    Zhang, Hongxin
    Ran, Teng
    Xiao, Wendong
    Lv, Kai
    Peng, Song
    Yuan, Liang
    Wang, Jingchuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [45] Clothing Image Parsing Method Based on Multi-scale Fusion Enhancement
    Chen L.
    Yu E.
    Tongji Daxue Xuebao/Journal of Tongji University, 2022, 50 (10): : 1385 - 1391
  • [46] Fusion of visible and infrared images based on multi-scale image enhancement
    Sun, Ming-Chao
    Zhang, Chong
    Liu, Jing-Hong
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2012, 42 (03): : 738 - 742
  • [47] A Multi-Scale Transformer Fusion Deep Clustering Network for Unsupervised Planetary Change Detection
    Jia, Yutong
    Wan, Gang
    Liu, Jia
    Zhao, Chenxu
    Wang, Guoping
    Zhang, Yifan
    Liu, Lei
    Xie, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [48] Underwater image restoration with multi-scale shallow feature extraction and detail enhancement network
    Wu, Heng
    Deng, Lei
    Chen, Meiyun
    Luo, Shaojuan
    Zhang, Fanlong
    He, Chunhua
    Zhang, Xianmin
    JOURNAL OF MODERN OPTICS, 2023, 70 (13-15) : 886 - 900
  • [49] Multi-scale convolution underwater image restoration network
    Zhijie Tang
    Jianda Li
    Jingke Huang
    Zhanhua Wang
    Zhihang Luo
    Machine Vision and Applications, 2022, 33
  • [50] Multi-Scale Transformer Network for Hyperspectral Image Denoising
    Hu, Shuai
    Hu, Yikun
    Lin, Junyan
    Gao, Feng
    Dong, Junyu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7328 - 7331