DPMFformer: an underwater image enhancement network based on deep pooling and multi-scale fusion transformer

被引:0
|
作者
Xiang, Dan [1 ,2 ]
Yang, Wenlei [2 ]
Zhou, Zebin [2 ]
Zhang, Jinwen [4 ]
Li, Jianxin [5 ]
Ouyang, Jian [3 ]
Ling, Jing [1 ]
机构
[1] Guangzhou Maritime Univ, Dept Informat & Commun Engn, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Elect & Informat, Guangzhou, Guangdong, Peoples R China
[3] Guangdong Polytech Normal Univ, Guangdong Ind Training Ctr, Guangzhou, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab Green Construct & Intellige, Guangzhou, Guangdong, Peoples R China
[5] Guangzhou Maritime Univ, Sch Intelligent Transportat & Engn, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater image enhancement; Transformer; Multi-scale fusion; Deep pooling; COLOR; CONTRAST;
D O I
10.1007/s12145-024-01573-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to light absorption and scattering, underwater images often suffer from color distortion, low contrast, and blurred details, seriously affects the effectiveness of advanced computer vision tasks. To address these degradation issues, this paper proposes an innovative underwater image enhancement algorithm, Deep Pooling and Multi-Scale Fusion Transformer (DPMFformer). The algorithm is composed of four key modules: the Dual-Balanced Multiscale Fusion Module (DBMF), the Deep Pooling Self-Attention Transformer (DPST), the Wavelet Sampling (WS), and the Global Spatial Feature Self-Attention Transformer (GSFAT). The DBMF module employs trainable color modules to simulate the grey-scale world theory, achieving inter-channel color balance. The DPST module enhances the network's ability to extract information from feature regions through a deep-pooling layer and spatial attention mechanism. The WS module utilizes Harr wavelet sampling instead of conventional up- and down-sampling, preserving low-frequency information while improving the up-sampling outcome. The GSFAT module combines Swin Transformer (SwinT) and Position Embedding Cascading Transformer (PCET), enhancing the extraction of global information through position embedding and a sliding window self-attention mechanism, thereby improving the attention on the degraded regions of the image. Experimental results show that the proposed DPMFfomer is superior to existing underwater image enhancement methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Incorporating Triple Attention and Multi-scale Pyramid Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (03) : 387 - 397
  • [32] MULTI-SCALE CONVOLUTION-TRANSFORMER FUSION NETWORK FOR ENDOSCOPIC IMAGE SEGMENTATION
    Zou, Baosheng
    Zhou, Zongguang
    Han, Ying
    Li, Kang
    Wang, Guotai
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [33] Underwater image object detection based on multi-scale feature fusion
    Yang, Chao
    Zhang, Ce
    Jiang, Longyu
    Zhang, Xinwen
    MACHINE VISION AND APPLICATIONS, 2024, 35 (06)
  • [34] Underwater Image Enhancement Based on Multi-Scale Attention and Contrast Learning
    Wang Yue
    Fan Huijie
    Liu Shiben
    Tang Yandong
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (04)
  • [35] Multi-scale gradient domain underwater image enhancement
    Mi, Zetian
    Liang, Zheng
    Wang, Yafei
    Fu, Xianping
    Chen, Zhengyu
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [36] Multi-scale fusion framework via retinex and transmittance optimization for underwater image enhancement
    Li, Tie
    Zhou, Tianfei
    PLOS ONE, 2022, 17 (09):
  • [37] MSTFDN: Multi-scale transformer fusion dehazing network
    Yan Yang
    Haowen Zhang
    Xudong Wu
    Xiaozhen Liang
    Applied Intelligence, 2023, 53 : 5951 - 5962
  • [38] MSTFDN: Multi-scale transformer fusion dehazing network
    Yang, Yan
    Zhang, Haowen
    Wu, Xudong
    Liang, Xiaozhen
    APPLIED INTELLIGENCE, 2023, 53 (05) : 5951 - 5962
  • [39] Dual stream fusion network for underwater image enhancement of multi-scale turbidity restoration and multi-path color correction
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    Chen, Xinyi
    OPTICS EXPRESS, 2024, 32 (04): : 6291 - 6308
  • [40] Remote sensing image semantic segmentation network based on multi-scale feature enhancement fusion
    Wang, Feiting
    Zhang, Yuan
    Hu, Qiongqiong
    Zhu, Yu
    GEOCARTO INTERNATIONAL, 2024, 39 (01)