WHHO: enhanced Harris hawks optimizer for feature selection in high-dimensional data

被引:1
|
作者
Meilin Zhang [1 ]
Huiling Chen [1 ]
Ali Asghar Heidari [2 ]
Yi Chen [1 ]
Zongda Wu [4 ]
Zhennao Cai [1 ]
Lei Liu [3 ]
机构
[1] Wenzhou University,Department of Computer Science and Artificial Intelligence
[2] University of Tehran,School of Surveying and Geospatial Engineering, College of Engineering
[3] Sichuan University,College of Computer Science
[4] Shaoxing University,Department of Computer Science and Engineering
关键词
Harris hawks optimization; Wormhole strategy; Swarm intelligence; High dimensional feature selection;
D O I
10.1007/s10586-024-04770-3
中图分类号
学科分类号
摘要
The Harris Hawks optimization (HHO) algorithm, categorized as a powerful meta-heuristic algorithm (MA), has gained extensive usage because it lacks parameter adjustment and shows powerful optimization ability. At the same time, it cannot be ignored within the realm of feature selection. However, HHO is deficient in its capacity to escape local optima, which deserves attention. HHO did not perform enough local search in the exploitation stage, resulting in poor final results. This limitation occurs from time to time when facing the high-dimensional feature selection. To address these concerns, a modification of HHO incorporating the wormhole strategy (WS) is proposed, called WHHO. As an example of local search, WS can mutate around the current and optimal search positions. By ensuring population diversity and enhancing the algorithm's capability to escape from local optima, WS contributes to improving results accuracy. WHHO first conducted qualitative experiments at CEC 2017, including historical trajectory analysis, balance analysis, and diversity analysis. Then, WHHO was compared with seven classical MAs, seven advanced MAs, and five well-known HHO variants. In the three groups of experiments, careful consideration of mean, standard deviation, Friedman test, and Wilcoxon sign-rank test results reveals that WHHO secures the top ranking. Furthermore, the binary variant of the algorithm, BWHHO, combined with the k nearest neighbor classifier, was developed for high-dimensional feature selection. Compared with nine binary MAs, WHHO uses fewer features to predict more accurate results on twelve high-dimensional datasets. The fitness value of WHHO on twelve datasets won the overwhelming first place, surpassing the second place with an average ranking of 2.5833. WHHO's ability to reduce the number of selected features is particularly impressive while maintaining high prediction accuracy. In the face of thousands of features, WHHO consistently selects fewer features, with retention rates below 20% on all datasets. This highlights WHHO's optimized feature selection ability and its effectiveness in simplifying the prediction process. Therefore, WHHO is an effective improved optimizer, especially for dealing with high-dimensional feature selection, which has effective value.
引用
收藏
相关论文
共 50 条
  • [31] Neighborhood Component Feature Selection for High-Dimensional Data
    Yang, Wei
    Wang, Kuanquan
    Zuo, Wangmeng
    JOURNAL OF COMPUTERS, 2012, 7 (01) : 161 - 168
  • [32] Efficient feature selection filters for high-dimensional data
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1794 - 1804
  • [33] On the scalability of feature selection methods on high-dimensional data
    V. Bolón-Canedo
    D. Rego-Fernández
    D. Peteiro-Barral
    A. Alonso-Betanzos
    B. Guijarro-Berdiñas
    N. Sánchez-Maroño
    Knowledge and Information Systems, 2018, 56 : 395 - 442
  • [34] Simultaneous Feature and Model Selection for High-Dimensional Data
    Perolini, Alessandro
    Guerif, Sebastien
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 47 - 50
  • [35] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [36] High-Dimensional Software Engineering Data and Feature Selection
    Wang, Huanjing
    Khoshgoftaar, Taghi M.
    Gao, Kehan
    Seliya, Naeem
    ICTAI: 2009 21ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, 2009, : 83 - +
  • [37] Feature Selection for High-Dimensional Data: The Issue of Stability
    Pes, Barbara
    2017 IEEE 26TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES - INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2017, : 170 - 175
  • [38] Hybrid Feature Selection for High-Dimensional Manufacturing Data
    Sun, Yajuan
    Yu, Jianlin
    Li, Xiang
    Wu, Ji Yan
    Lu, Wen Feng
    2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [39] A hybrid feature selection method for high-dimensional data
    Taheri, Nooshin
    Nezamabadi-pour, Hossein
    2014 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2014, : 141 - 145
  • [40] Clustering high-dimensional data via feature selection
    Liu, Tianqi
    Lu, Yu
    Zhu, Biqing
    Zhao, Hongyu
    BIOMETRICS, 2023, 79 (02) : 940 - 950