High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations

被引:0
|
作者
Jago, Matthew J. [1 ]
Soley, Jake K. [1 ,2 ]
Denisov, Stepan [1 ]
Walsh, Calum J. [2 ]
Gifford, Danna R. [1 ]
Howden, Benjamin P. [2 ,3 ]
Lagator, Mato [1 ]
机构
[1] Univ Manchester, Fac Biol Med & Hlth, Sch Biol Sci, Div Evolut Infect & Genom Sci, Manchester M13 9PL, England
[2] Univ Melbourne, Peter Doherty Inst Infect & Immun, Dept Microbiol & Immunol, Melbourne, Vic 3000, Australia
[3] Univ Melbourne, Ctr Pathogen Genom, Melbourne, Vic 3000, Australia
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
TRANSFER-RNA; COLI; GENOME; EXPRESSION; MECHANISM; GENE;
D O I
10.1038/s41467-025-56050-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental obstacle to tackling the antimicrobial resistance crisis is identifying mutations that lead to resistance in a given genomic background and environment. We present a high-throughput technique - Quantitative Mutational Scan sequencing (QMS-seq) - that enables quantitative comparison of which genes are under antibiotic selection and captures how genetic background influences resistance evolution. We compare four E. coli strains exposed to ciprofloxacin, cycloserine, or nitrofurantoin and identify 812 resistance mutations, many in genes and regulatory regions not previously associated with resistance. We find that multi-drug and antibiotic-specific resistance are acquired through categorically different types of mutations, and that minor genotypic differences significantly influence evolutionary routes to resistance. By quantifying mutation frequency with single base pair resolution, QMS-seq informs about the underlying mechanisms of resistance and identifies mutational hotspots within genes. Our method provides a way to rapidly screen for resistance mutations while assessing the impact of multiple confounding factors.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A Quantitative Metagenomic Sequencing Approach for High-Throughput Gene Quantification and Demonstration with Antibiotic Resistance Genes
    Li, Bo
    Li, Xu
    Yan, Tao
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2021, 87 (16) : 1 - 11
  • [32] High-throughput profiling the effects of zinc on antibiotic resistance genes in the anaerobic digestion of swine manure
    Zhang, Ranran
    Gong, Chenpan
    Liu, Menglong
    Zhou, Liuyuan
    Zhuang, Haifeng
    Hu, Zhijun
    ENVIRONMENTAL TECHNOLOGY, 2024, 45 (17) : 3315 - 3327
  • [33] Identification of genetic determinants of antibiotic resistance in Helicobacter pylori isolates in Vietnam by high-throughput sequencing
    Phuc Hoang Bui
    Trang Ngoc Minh Cao
    Thanh Truc Tran
    Takashi Matsumoto
    Junko Akada
    Yoshio Yamaoka
    BMC Microbiology, 25 (1)
  • [34] High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems
    Xu, Like
    Ouyang, Weiying
    Qian, Yanyun
    Su, Chao
    Su, Jianqiang
    Chen, Hong
    ENVIRONMENTAL POLLUTION, 2016, 213 : 119 - 126
  • [35] Mutagenomics: A Rapid, High-Throughput Method to Identify Causative Mutations from a Genetic Screen
    Hodgens, Charles
    Chang, Nicole
    Schaller, G. Eric
    Kieber, Joseph J.
    PLANT PHYSIOLOGY, 2020, 184 (04) : 1658 - 1673
  • [36] High-throughput method for lipophilicity measurement
    Chen, Zhi
    Weber, Stephen G.
    ANALYTICAL CHEMISTRY, 2007, 79 (03) : 1043 - 1049
  • [37] High-throughput Phenotyping of Lung Cancer Somatic Mutations
    Berger, Alice H.
    Brooks, Angela N.
    Wu, Xiaoyun
    Shrestha, Yashaswi
    Chouinard, Candace
    Piccioni, Federica
    Bagul, Mukta
    Kamburov, Atanas
    Imielinski, Marcin
    Hogstrom, Larson
    Zhu, Cong
    Yang, Xiaoping
    Pantel, Sasha
    Sakai, Ryo
    Watson, Jacqueline
    Kaplan, Nathan
    Campbell, Joshua D.
    Singh, Shantanu
    Root, David E.
    Narayan, Rajiv
    Natoli, Ted
    Lahr, David L.
    Tirosh, Itay
    Tamayo, Pablo
    Getz, Gad
    Wong, Bang
    Doench, John
    Subramanian, Aravind
    Golub, Todd R.
    Meyerson, Matthew
    Boehm, Jesse S.
    CANCER CELL, 2016, 30 (02) : 214 - 228
  • [38] High-throughput phenotyping of lung cancer somatic mutations
    Berger, Alice H.
    Brooks, Angela N.
    Wu, Xiaoyun
    Shrestha, Yashaswi
    Chouinard, Candace
    Piccioni, Federica
    Bagul, Mukta
    Kamburov, Atanas
    Innielinski, Marcin
    Hogstrom, Larson
    Zhu, Cong
    Yang, Xiaoping
    Pantel, Sasha
    Sakai, Ryo
    Kaplan, Nathan
    Root, David
    Narayan, Rajiv
    Natoli, Ted
    Lahr, David
    Tirosh, Itay
    Tamayo, Pablo
    Getz, Gad
    Wong, Bang
    Doench, John
    Subramanian, Aravind
    Golub, Todd R.
    Meyerson, Matthew
    Boehm, Jesse S.
    CANCER RESEARCH, 2016, 76
  • [39] A high-throughput genome-walking method and its use for cloning unknown flanking sequences
    Reddy, Palakolanu Sudhakar
    Mahanty, Srikrishna
    Kaul, Tanushri
    Nair, Suresh
    Sopory, Sudhir K.
    Reddy, Malireddy K.
    ANALYTICAL BIOCHEMISTRY, 2008, 381 (02) : 248 - 253
  • [40] High-throughput functional evaluation of variants of unknown significance in EGFR
    Kohsaka, Shinji
    Nagano, Masaaki
    Ueno, Toshihide
    Suehara, Yoshiyuki
    Hayashi, Takuo
    Shimada, Naoko
    Takahashi, Kazuhisa
    Suzuki, Kenji
    Takamochi, Kazuya
    Takahashi, Fumiyuki
    Mano, Hiroyuki
    CANCER RESEARCH, 2017, 77