High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations

被引:0
|
作者
Jago, Matthew J. [1 ]
Soley, Jake K. [1 ,2 ]
Denisov, Stepan [1 ]
Walsh, Calum J. [2 ]
Gifford, Danna R. [1 ]
Howden, Benjamin P. [2 ,3 ]
Lagator, Mato [1 ]
机构
[1] Univ Manchester, Fac Biol Med & Hlth, Sch Biol Sci, Div Evolut Infect & Genom Sci, Manchester M13 9PL, England
[2] Univ Melbourne, Peter Doherty Inst Infect & Immun, Dept Microbiol & Immunol, Melbourne, Vic 3000, Australia
[3] Univ Melbourne, Ctr Pathogen Genom, Melbourne, Vic 3000, Australia
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
TRANSFER-RNA; COLI; GENOME; EXPRESSION; MECHANISM; GENE;
D O I
10.1038/s41467-025-56050-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental obstacle to tackling the antimicrobial resistance crisis is identifying mutations that lead to resistance in a given genomic background and environment. We present a high-throughput technique - Quantitative Mutational Scan sequencing (QMS-seq) - that enables quantitative comparison of which genes are under antibiotic selection and captures how genetic background influences resistance evolution. We compare four E. coli strains exposed to ciprofloxacin, cycloserine, or nitrofurantoin and identify 812 resistance mutations, many in genes and regulatory regions not previously associated with resistance. We find that multi-drug and antibiotic-specific resistance are acquired through categorically different types of mutations, and that minor genotypic differences significantly influence evolutionary routes to resistance. By quantifying mutation frequency with single base pair resolution, QMS-seq informs about the underlying mechanisms of resistance and identifies mutational hotspots within genes. Our method provides a way to rapidly screen for resistance mutations while assessing the impact of multiple confounding factors.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer
    Kohsaka, Shinji
    CANCER SCIENCE, 2018, 109 : 363 - 363
  • [22] A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer
    Kohsaka, Shinji
    Nagano, Masaaki
    Ueno, Toshihide
    Suehara, Yoshiyuki
    Hayashi, Takuo
    Shimada, Naoko
    Takahashi, Kazuhisa
    Suzuki, Kenji
    Takamochi, Kazuya
    Takahashi, Fumiyuki
    Mano, Hiroyuki
    SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (416)
  • [23] PhosphoFlowSeq - A High-throughput Kinase Activity Assay for Screening Drug Resistance Mutations in EGFR
    Wagner, Anja
    Teufl, Magdalena
    Gold, Lukas
    Lehner, Manfred
    Obinger, Christian
    Sykacek, Peter
    Traxlmayr, Michael W.
    JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (22)
  • [24] Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment
    Hughes, Jim R.
    Roberts, Nigel
    McGowan, Simon
    Hay, Deborah
    Giannoulatou, Eleni
    Lynch, Magnus
    De Gobbi, Marco
    Taylor, Stephen
    Gibbons, Richard
    Higgs, Douglas R.
    NATURE GENETICS, 2014, 46 (02) : 205 - +
  • [25] High-Throughput Metabarcoding Characterizes Fungal Endophyte Diversity in the Phyllosphere of a Barley Crop
    Milazzo, Carla
    Zulak, Katherine G.
    Muria-Gonzalez, M. Jordi
    Jones, Darcy
    Power, Matthew
    Bransgrove, Kaylene
    Bunce, Michael
    Lopez-Ruiz, Francisco J.
    PHYTOBIOMES JOURNAL, 2021, 5 (03): : 316 - 325
  • [26] Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment
    Jim R Hughes
    Nigel Roberts
    Simon McGowan
    Deborah Hay
    Eleni Giannoulatou
    Magnus Lynch
    Marco De Gobbi
    Stephen Taylor
    Richard Gibbons
    Douglas R Higgs
    Nature Genetics, 2014, 46 : 205 - 212
  • [27] Technologies for High-Throughput Identification of Antibiotic Mechanism of Action
    da Cunha, Bernardo Ribeiro
    Zoio, Paulo
    Fonseca, Luis P.
    Calado, Cecilia R. C.
    ANTIBIOTICS-BASEL, 2021, 10 (05):
  • [28] Development of a Robust and Quantitative High-Throughput Screening Method for Antibiotic Production in Bacterial Libraries
    Murray, Elizabeth M.
    Allen, Catherine F.
    Handy, Tess E.
    Huffine, Clair A.
    Craig, Whitney R.
    Seaton, Sarah C.
    Wolfe, Amanda L.
    ACS OMEGA, 2019, 4 (13): : 15414 - 15420
  • [29] High-Throughput Screening for Streptomyces Antibiotic Biosynthesis Activators
    Chen, Li
    Wang, Yemin
    Guo, Hang
    Xu, Min
    Deng, Zixin
    Tao, Meifeng
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (12) : 4526 - 4528
  • [30] Application of high-throughput sequencing for detection of viruses causing disease of previously unknown etiology on Iris sp. in Serbia
    Vucurovic, A.
    Kutnjak, D.
    Mehle, N.
    Kogej, Z.
    Stankovic, I.
    Krstic, B.
    Ravnikar, M.
    PHYTOPATHOLOGY, 2020, 110 (12) : 165 - 165