Enhancing the classification of seismic events with supervised machine learning and feature importance

被引:0
|
作者
Habbak, Eman L. [1 ]
Abdalzaher, Mohamed S. [2 ]
Othman, Adel S. [1 ]
Mansour, Ha [3 ]
机构
[1] Natl Res Inst Astron & Geophys, ENDC Dept, Cairo 11421, Egypt
[2] Natl Res Inst Astron & Geophys, Seismol Dept, Cairo 11421, Egypt
[3] Benha Univ, Shobra Fac Engn, Elect Engn Dept, Cairo 11629, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Machine learning; Seismic discrimination; Earthquakes; Quarry blasts; Feature Importance; QUARRY BLASTS; DISCRIMINATION; EARTHQUAKES; SPECTRA; WAVES; RATIO;
D O I
10.1038/s41598-024-81113-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The accurate classification of seismic events into natural earthquakes (EQ) and quarry blasts (QB) is crucial for geological understanding, seismic hazard mitigation, and public safety. This paper proposes a machine-learning approach to discriminate seismic events, particularly differentiating between natural EQs and man-made QBs. The core of this study is to integrate different features into a unified dataset to train some linear and nonlinear supervised machine learning (ML) models. The proposed approach considers a collection of 837 events (EQs and QBs) with local magnitudes of 1.5 <= ML <= 3.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5 \le M_{L} \le 3.3$$\end{document} from the Egyptian National Seismic Network (ENSN) seismic event catalog between 2009 and 2015. This paper's principal contribution is applying feature selection techniques and feature importance analysis to identify the best features leading to the best events' discrimination. In other words, the proposed approach enhances classification accuracy and provides insights into which features are most crucial for distinguishing between EQ and QB events. The results show that with only three features, corner frequency, power of event, and spectral ratio, the best-developed ML model accomplishes a discrimination accuracy of 100% among several benchmarks of linear and non-linear models.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Reevaluating feature importance in machine learning for food authentication: Addressing bias and enhancing methodological rigor
    Takefuji, Yoshiyasu
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2025, 157
  • [22] Supervised machine learning and active learning in classification of radiology reports
    Nguyen, Dung H. M.
    Patrick, Jon D.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2014, 21 (05) : 893 - 901
  • [23] CLASSIFICATION OF SEISMIC PHASES BASED ON MACHINE LEARNING
    Marat, Nurtas
    Zharasbek, Baishemirov
    Madi, Tastanov
    Zhandos, Zhanabekov
    Victor, Tsay
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2020, 5 (333): : 33 - 42
  • [24] Enhancing Classification Performance through FeatureBoostThyro: A Comparative Study of Machine Learning Algorithms and Feature Selection
    Bhende, Deepali
    Sakarkar, Gopal
    Khandar, Punam
    Uparkar, Satyajit
    Bhave, Arvind
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (04) : 29 - 42
  • [25] Seismic Data Classification using Machine Learning
    Li, Wenrui
    Nakshatra
    Narvekar, Nishita
    Raut, Nitisha
    Sirkeci, Birsen
    Gao, Jerry
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2018), 2018, : 56 - 63
  • [26] Machine Learning Based Seismic Region Classification
    Oliveira, Samuel da S.
    Canuto, Anne M. P.
    Carvalho, Bruno M.
    Kreutz, Marcio E.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [27] Self-Supervised Learning for Seismic Data: Enhancing Model Interpretability With Seismic Attributes
    Salazar, Jose Julian
    Maldonado-Cruz, Eduardo
    Ochoa, Jesus
    Pyrcz, Michael J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] Supervised machine learning aided behavior classification in pigeons
    Wittek, Neslihan
    Wittek, Kevin
    Keibel, Christopher
    Gunturkun, Onur
    BEHAVIOR RESEARCH METHODS, 2023, 55 (04) : 1624 - 1640
  • [29] Automatic Patents Classification Using Supervised Machine Learning
    Shahid, Muhammad
    Ahmed, Adeel
    Mushtaq, Muhammad Faheem
    Ullah, Saleem
    Matiullah
    Akram, Urooj
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 : 297 - 307
  • [30] Supervised machine learning aided behavior classification in pigeons
    Neslihan Wittek
    Kevin Wittek
    Christopher Keibel
    Onur Güntürkün
    Behavior Research Methods, 2023, 55 : 1624 - 1640