UA-FER: Uncertainty-aware representation learning for facial expression recognition

被引:1
|
作者
Zhou, Haoliang [1 ]
Huang, Shucheng [1 ]
Xu, Yuqiao [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp, Zhenjiang 212003, Peoples R China
[2] Tianjin Univ Technol, Sch Comp Sci & Engn, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Facial expression recognition; Uncertainty-aware representation learning; Evidential deep learning; Vision-language pre-training model; Knowledge distillation; FEATURES;
D O I
10.1016/j.neucom.2024.129261
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial Expression Recognition (FER) remains a challenging task due to unconstrained conditions like variations in illumination, pose, and occlusion. Current FER approaches mainly focus on learning discriminative features through local attention and global perception of visual encoders, while neglecting the rich semantic information in the text modality. Additionally, these methods rely solely on the softmax-based activation layer for predictions, resulting in overconfident decision-making that hampers the effective handling of uncertain samples and relationships. Such insufficient representations and overconfident predictions degrade recognition performance, particularly in unconstrained scenarios. To tackle these issues, we propose an end-to-end FER framework called UA-FER, which integrates vision-language pre-training (VLP) models with evidential deep learning (EDL) theory to enhance recognition accuracy and robustness. Specifically, to identify multi-grained discriminative regions, we propose the Multi-granularity Feature Decoupling (MFD) module, which decouples global and local facial representations based on image-text affinity while distilling the universal knowledge from the pre-trained VLP models. Additionally, to mitigate misjudgments in uncertain visual-textual relationships, we introduce the Relation Uncertainty Calibration (RUC) module, which corrects these uncertainties using EDL theory. In this way, the model enhances its ability to capture emotion-related discriminative representations and tackle uncertain relationships, thereby improving overall recognition accuracy and robustness. Extensive experiments on in-the-wild and in-the-lab datasets demonstrate that our UA-FER outperforms the state-of-the-art models.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Barycentric Representation and Metric Learning for Facial Expression Recognition
    Kacem, Anis
    Daoudi, Mohamed
    Alvarez-Paiva, Juan-Carlos
    PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, : 443 - 447
  • [22] Representation ensemble learning applied to facial expression recognition
    Bruna Rossetto Delazeri
    Andre Gustavo Hochuli
    Jean Paul Barddal
    Alessandro Lameiras Koerich
    Alceu de Souza Britto
    Neural Computing and Applications, 2025, 37 (1) : 417 - 438
  • [23] Micro-Expression Recognition Using Uncertainty-Aware Magnification-Robust Networks
    Wei, Mengting
    Zong, Yuan
    Jiang, Xingxun
    Lu, Cheng
    Liu, Jiateng
    ENTROPY, 2022, 24 (09)
  • [24] NPCL: Neural Processes for Uncertainty-Aware Continual Learning
    Jha, Saurav
    Gong, Dong
    Zhao, He
    Yao, Lina
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [25] Uncertainty-Aware Deep Learning Based Deformable Registration
    Grigorescu, Irina
    Uus, Alena
    Christiaens, Daan
    Cordero-Grande, Lucilio
    Hutter, Jana
    Batalle, Dafnis
    Edwards, A. David
    Hajnal, Joseph V.
    Modat, Marc
    Deprez, Maria
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 54 - 63
  • [26] Uncertainty-aware machine learning for high energy physics
    Ghosh, Aishik
    Nachman, Benjamin
    Whiteson, Daniel
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [27] Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
    Einbinder, Bat-Sheva
    Romano, Yaniv
    Sesia, Matteo
    Zhou, Yanfei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [28] Uncertainty-Aware Data Aggregation for Deep Imitation Learning
    Cui, Yuchen
    Isele, David
    Niekum, Scott
    Fujimura, Kikuo
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 761 - 767
  • [29] Uncertainty-aware selecting for an ensemble of deep food recognition models
    Aguilar E.
    Nagarajan B.
    Radeva P.
    Computers in Biology and Medicine, 2022, 146
  • [30] Learning an Uncertainty-Aware Object Detector for Autonomous Driving
    Meyer, Gregory P.
    Thakurdesai, Niranjan
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10521 - 10527