Uncertainty-Aware Deep Learning Based Deformable Registration

被引:1
|
作者
Grigorescu, Irina [1 ,2 ]
Uus, Alena [1 ,2 ]
Christiaens, Daan [1 ,3 ,4 ]
Cordero-Grande, Lucilio [1 ,2 ,6 ,7 ]
Hutter, Jana [1 ]
Batalle, Dafnis [1 ,5 ]
Edwards, A. David [1 ]
Hajnal, Joseph V. [1 ,2 ]
Modat, Marc [2 ]
Deprez, Maria [1 ,2 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, Ctr Dev Brain, London, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, Biomed Engn Dept, London, England
[3] Katholieke Univ Leuven, Dept Elect Engn, Leuven, Belgium
[4] Katholieke Univ Leuven, Dept ESAT PSI, Leuven, Belgium
[5] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Forens & Neurodev Sci, London, England
[6] Univ Politecn Madrid, Biomed Image Technol, ETSI Telecomunicac, Madrid, Spain
[7] CIBER BNN, Madrid, Spain
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Multi-channel registration; Uncertainty; Certainty maps; BRAIN MRI; RECONSTRUCTION;
D O I
10.1007/978-3-030-87735-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an uncertainty-aware deep learning deformable image registration solution for magnetic resonance imaging multi-channel data. In our proposed framework, the contributions of structural and microstructural data to the displacement field are weighted with spatially varying certainty maps. We produce certainty maps by employing a conditional variational autoencoder image registration network, which enables us to generate uncertainty maps in the deformation field itself. Our approach is quantitatively evaluated on pairwise registrations of 36 neonates to a standard structural and/or microstructural template, and compared with models trained on either single modality, or both modalities together. Our results show that by incorporating uncertainty while fusing the two modalities, we achieve superior alignment in cortical gray matter and white matter regions, while also achieving a good alignment of the white matter tracts. In addition, for each of our trained models, we show examples of average uncertainty maps calculated for 10 neonates scanned at 40 weeks post-menstrual age.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 50 条
  • [1] Uncertainty-Aware Annotation Protocol to Evaluate Deformable Registration Algorithms
    Peter, Loic
    Alexander, Daniel C.
    Magnain, Caroline
    Iglesias, Juan Eugenio
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (08) : 2053 - 2065
  • [2] Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
    Einbinder, Bat-Sheva
    Romano, Yaniv
    Sesia, Matteo
    Zhou, Yanfei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [3] Uncertainty-Aware Data Aggregation for Deep Imitation Learning
    Cui, Yuchen
    Isele, David
    Niekum, Scott
    Fujimura, Kikuo
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 761 - 767
  • [4] Uncertainty-aware autonomous sensing with deep reinforcement learning
    Murad, Abdulmajid
    Kraemer, Frank Alexander
    Bach, Kerstin
    Taylor, Gavin
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 156 : 242 - 253
  • [5] Uncertainty-Aware Multiview Deep Learning for Internet of Things Applications
    Xu, Cai
    Zhao, Wei
    Zhao, Jinglong
    Guan, Ziyu
    Song, Xiangyu
    Li, Jianxin
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1456 - 1466
  • [6] Uncertainty-Aware Action Advising for Deep Reinforcement Learning Agents
    Da Silva, Felipe Lena
    Hernandez-Leal, Pablo
    Kartal, Bilal
    Taylor, Matthew E.
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5792 - 5799
  • [7] Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
    Du, Chao
    Gao, Zhifeng
    Yuan, Shuo
    Gao, Lining
    Li, Ziyan
    Zeng, Yifan
    Zhu, Xiaoqiang
    Xu, Jian
    Gai, Kun
    Lee, Kuang-Chih
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2792 - 2801
  • [8] Uncertainty-Aware Interpretable Deep Learning for Slum Mapping and Monitoring
    Fisher, Thomas
    Gibson, Harry
    Liu, Yunzhe
    Abdar, Moloud
    Posa, Marius
    Salimi-Khorshidi, Gholamreza
    Hassaine, Abdelaali
    Cai, Yutong
    Rahimi, Kazem
    Mamouei, Mohammad
    [J]. REMOTE SENSING, 2022, 14 (13)
  • [9] Uncertainty-aware Deep Learning Forecast using Dropout-based Ensemble Method
    Lee, HyunYong
    Kim, Nac-Woo
    Lee, Jun-Gi
    Lee, Byung-Tak
    [J]. 2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 1120 - 1125
  • [10] Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
    Jiaxin Ren
    Jingcheng Wen
    Zhibin Zhao
    Ruqiang Yan
    Xuefeng Chen
    Asoke K. Nandi
    [J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11 (06) : 1317 - 1330